In this paper we continue to study Belavin–Drinfeld cohomology introduced in Kadets et al., Commun. Math. Phys. 344(1), 1-24 (2016) and related to the classification of quantum groups whose quasi-classical limit is a given simple complex Lie algebra 𝔤. Here we compute Belavin–Drinfeld cohomology for all non-skewsymmetric r-matrices on the Belavin–Drinfeld list for simple Lie algebras of type B, C, and D.

1.
Belavin
,
A.
and
Drinfeld
,
V.
, “
Triangle equations and simple Lie algebras
,”
Sov. Sci. Rev., Sect. C: Math. Phys. Rev.
4
,
93
165
(
1984
).
2.
Drinfeld
,
V.
, “
Hopf algebras and the quantum Yang-Baxter equation
,”
Dokl. Akad. Nauk SSSR
283
(
5
),
1060
1064
(
1985
).
3.
Etingof
,
P.
and
Kazhdan
,
D.
, “
Quantization of Lie bialgebras I
,”
Sel. Math.
2
,
1
41
(
1996
).
4.
Etingof
,
P.
and
Kazhdan
,
D.
, “
Quantization of Lie bialgebras II
,”
Sel. Math.
4
,
213
232
(
1998
).
5.
Etingof
,
P.
and
Schiffmann
,
O.
,
Lectures on Quantum Groups
(
International Press
,
Cambridge
,
1988
).
6.
Etingof
,
P.
,
Schedler
,
T.
, and
Schiffmann
,
O.
, “
Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras
,”
J. Am. Math. Soc.
13
(
3
),
595
609
(
2000
).
7.
Jimbo
,
M.
, “
A q-difference analogue of U𝔤 and the Yang-Baxter equation
,”
Lett. Math. Phys.
10
,
63
69
(
1985
).
8.
Kadets
,
B.
,
Karolinsky
,
E.
,
Pop
,
I.
, and
Stolin
,
A.
, “
Classification of quantum groups and Belavin–Drinfeld cohomologies
,”
Commun. Math. Phys.
344
(
1
),
1
24
(
2016
).
9.
Kulish
,
P. P.
and
Reshetikhin
,
N. Yu.
, “
Quantum linear problem for the sine-Gordon equation and higher representations
,”
J. Sov. Math.
23
,
2435
2441
(
1983
).
10.
Stolin
,
A.
, “
Some remarks on Lie bialgebra structures on simple complex Lie algebras
,”
Commun. Algebra
27
,
4289
4302
(
1999
).
11.
Stolin
,
A.
and
Pop
,
I.
, “
Classification of quantum groups and Lie bialgebra structures on sl(n, F). Relations with Brauer group
,”
Adv. Math.
293
,
324
342
(
2016
).
You do not currently have access to this content.