We construct the inverse Shapovalov form of a simple complex quantum group from its universal R-matrix based on a generalized Nagel-Moshinsky approach to lowering operators. We establish a connection between this algorithm and the ABRR equation for dynamical twist.

1.
N. N.
Shapovalov
, “
On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra
,”
Funk. Anal.
6
,
65
70
(
1972
).
2.
J. C.
Jantzen
,
Lectures on Quantum Groups
,
Graduate Studies in Mathematics
(
AMS
,
Providence, RI
,
1996
), Vol.
6
.
3.
A.
Alekseev
and
A.
Lachowska
, “
Invariant ∗-product on coadjoint orbits and the Shapovalov pairing
,”
Comment. Math. Helv.
80
,
795
810
(
2005
).
4.
V.
Drinfeld
, “
Quantum groups
,” in
Proceedings of the International Congress of Mathematicians, Berkeley, 1986
, edited by
A. V.
Gleason
(
AMS
,
Providence
,
1987
), pp.
798
820
.
5.
C.
de Concini
and
V. G.
Kac
, “
Representations of quantum groups at roots of 1. Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989)
,” in
Progress in Mathematics
(
Birkhäuser
,
1990
), Vol.
92
, pp.
471
506
.
6.
S.
Levendorskiy
and
J.
Soibelman
, “
Quantum Weyl group and multiplicative formula for R-matrix of simple Lie algebra
,”
Funct. Anal. Appl.
25
,
143
145
(
1991
).
7.
S.
Khoroshkin
and
V.
Tolstoy
, “
The universal R-matrix for quantum untwisted affine Lie algebras
,”
Funct. Anal. Appl.
26
,
69
71
(
1992
).
8.
J. G.
Nagel
and
M.
Moshinsky
, “
Operators that lower or raise the irreducible vector spaces of Un−1 contained in an irreducible vector space of Un
,”
J. Math. Phys.
6
,
682
694
(
1965
).
9.
A. I.
Molev
, “
Gelfand-Tsetlin bases for classical Lie algebras
,” in
Handbook of Algebra
(
Elsevier/North-Holland
,
Amsterdam
,
2006
), Vol.
4
, pp.
109
170
.
10.
T.
Ashton
and
A.
Mudrov
, “
R-matrix and Mickelsson algebras for orthosymplectic quantum groups
,”
J. Math. Phys.
56
,
081701
(
2015
).
11.
P.
Etingof
and
O.
Schiffmann
,
Lectures on the Dynamical Yang-Baxter Equation, Quantum Groups and Lie Theory
,
London Mathematical Society Lecture Note Series, Durham, 1999
(
Cambridge University Press
,
2001
), Vol.
290
.
12.
D.
Arnaudon
,
E.
Buffenoir
,
E.
Ragoucy
, and
P.
Roche
, “
Universal solutions of quantum dynamical Yang-Baxter equations
,”
Lett. Math. Phys.
44
(
3
),
201
214
(
1998
).
13.
V.
Chari
and
A.
Pressley
,
A Guide to Quantum Groups
(
Cambridge University Press
,
Cambridge
,
1995
).
You do not currently have access to this content.