We construct the shifted genus expanded W algebra, which is isomorphic to the central subalgebra A of infinite symmetric group algebra and to the shifted Schur symmetrical function algebra Λ* defined by Okounkov and Olshanskii. As an application, we get some differential equations for the generating functions of the shifted Hurwitz numbers; thus, we can express the generating functions in terms of the shifted genus expanded cut-and-join operators.

1.
Alexandrov
,
A.
,
Mironov
,
A.
,
Morozov
,
A.
, and
Natanzon
,
S.
, “
On KP-integrable Hurwitz functions
,”
J. High Energy Phys.
2014
(
11
),
080
.
2.
Goulden
,
I. P.
and
Jackson
,
D. M.
, “
A proof of a conjecture for the number of ramified covering of the sphere by the torus
,”
J. Comb. Theory, Ser. A
88
,
246
258
(
1999
).
3.
Goulden
,
I. P.
and
Jackson
,
D. M.
, “
The number of ramified covering of the sphere by the double torus, and a general form for higher genera
,”
J. Comb. Theory, Ser. A
88
,
259
275
(
1999
).
4.
Goulden
,
I. P.
and
Jackson
,
D. M.
, “
Transitive factorisations into transpositions and holomorphic mapping on the sphere
,”
Proc. Am. Math. Soc.
125
,
51
60
(
1997
).
5.
Hurwitz
,
A.
, “
Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten
,”
Math. Ann.
39
,
1
60
(
1891
).
6.
Ivanov
,
V. N.
and
Kerov
,
S. V. E.
, “
The algebra of conjugacy classes in symmetric groups, and partial permutations
,”
J. Math. Sci. (New York)
107
(
5
),
4212
4230
(
2001
).
7.
Ionel
,
E.
and
Parker
,
T.
, “
Gromov-Witten invariants of symplectic sums
,”
Math. Res. Lett.
5
,
563
576
(
1998
).
8.
Lerman
,
E.
, “
Symplectic cuts
,”
Math. Res. Lett.
2
,
247
258
(
1995
).
9.
Li
,
A. M.
and
Ruan
,
Y. B.
, “
Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds
,”
Invent. Math.
145
,
151
218
(
2001
).
10.
Li
,
A. M.
,
Zhao
,
G. S.
, and
Zheng
,
Q.
, “
The number of ramified covering of a Riemann surface by Riemann surface
,”
Commun. Math. Phys.
213
,
685
696
(
2000
).
11.
Macdonald
,
I. G.
,
Symmetric Functions and Hall Polynomials
, 2nd ed.
Oxford Mathematical Monographs, Oxford Science Publications
(
The Clarendon Press, Oxford University Press
,
New York
,
1995
), With contributions by A. Zelevinsky.
12.
Morozov
,
A.
and
Natanzon
,
S.
, “
Complete set of cut-and-join operators in Hurwitz-Kontsevich theory
,”
Theoret. Math. Phys.
166
(
1
),
1
22
(
2011
).
13.
Mironov
,
A.
,
Morozov
,
A.
, and
Natanzon
,
S.
, “Universal algebras of Hurwitz numbers,” e-print arXiv:0909.1164.
14.
Mironov
,
A.
,
Morozov
,
A.
, and
Natanzon
,
S.
, “
Algebra of differential operators associated with Young diagrams
,”
J. Geom. Phys.
62
,
148
155
(
2012
).
15.
Morozov
,
A.
and
Shakirov
,
Sh.
, “
Generation of Matrix Models by W ˆ -operators
,”
J. High Energy Phys.
4
(
4
),
33
(
2009
).
16.
Okounkov
,
A. Y.
and
Olshanskii
,
G. I.
, “
Shifted Schur functions
,”
Algebra Anal.
9
(
2
),
73
146
(
1997
).
17.
Okounkov
,
A.
and
Pandharipande
,
R.
, “
Gromov-Witten theory, Hurwitz theory, and completed cycles
,”
Ann. Math.
163
,
517
560
(
2006
).
18.
Zheng
,
Q.
, “
Genus expanded cut-and-join operators and generalized Hurwtiz numbers
,”
Acta Math. Sin.
(unpublished); e-print arXiv:1511.00823.
You do not currently have access to this content.