In this paper we investigate Bose-Einstein condensation into the one-particle ground state in interacting quantum many-particle systems on graphs. We extend previous results obtained for particles on an interval and show that even arbitrarily small repulsive two-particle interactions destroy the condensate in the one-particle ground state present in the non-interacting Bose gas. Our results also cover singular two-particle interactions, such as the well-known Lieb-Liniger model, in the thermodynamic limit.

1.
A.
Einstein
,
Sitzber. Kgl. Preuss. Akadm. Wiss.
261
267
(
1924
).
2.
A.
Einstein
,
Sitzber. Kgl. Preuss. Akadm. Wiss.
3
14
(
1925
).
3.
V. A.
Zagrebnov
and
J. B.
Bru
, “
The Bogoliubov model of weakly imperfect Bose gas
,”
Phys. Rep.
350
,
291
434
(
2001
).
4.
E.
Buffet
,
P.
de Smedt
, and
J. V.
Pulè
, “
The condensate equation for some Bose systems
,”
J. Phys. A: Math. Gen.
16
,
4307
4324
(
1983
).
5.
E. H.
Lieb
and
R.
Seiringer
, “
Proof of Bose-Einstein condensation for dilute trapped gases
,”
Phys. Rev. Lett.
88
,
170409
(
2002
).
6.
A. V.
J. Lauwers
and
V.
Zagrebnov
, “
Proof of Bose-Einstein condensation for interacting gases with a one-particle gap
,”
J. Phys. A: Math. Gen.
36
,
169
174
(
2003
).
7.
M. D.
Girardeau
, “
Relationship between systems of impenetrable bosons and fermions in one dimension
,”
J. Math. Phys.
1
,
516
523
(
1960
).
8.
M.
van den Berg
,
J. T.
Lewis
, and
J. V.
Pulé
, “
A general theory of Bose-Einstein condensation
,”
Helv. Phys. Acta
59
,
1271
(
1986
).
9.
M.
van den Berg
and
J. T.
Lewis
, “
On generalized condensation in the free boson gas
,”
Physica A
110
,
550
564
(
1982
).
10.
M.
van den Berg
, “
On boson condensation into an infinite number of low-lying levels
,”
J. Math. Phys.
23
,
1159
1161
(
1982
).
11.
E.
Buffet
and
J. V.
Pulé
, “
A hard core Bose gas
,”
J. Stat. Phys.
40
,
631
653
(
1985
).
12.
E.
Buffet
and
J. V.
Pulé
, “
Hard bosons in one dimension
,”
Annales de l’I.H.P. Physique théorique
44
,
327
340
(
1986
), http://eudml.org/doc/76322.
13.
P.
Aonghusa
and
J.
Pulé
, “
Hard cores destroy Bose-Einstein condensation
,”
Lett. Math. Phys.
14
,
117
121
(
1987
).
14.
J.
Bolte
and
J.
Kerner
, “
Many-particle quantum graphs and Bose-Einstein condensation
,”
J. Math. Phys.
55
,
061901
(
2014
).
15.
P.
de Smedt
, “
The effect of repulsive interactions on Bose-Einstein condensation
,”
J. Stat. Phys.
45
,
201
213
(
1986
).
16.
G.
Berkolaiko
and
P.
Kuchment
,
Introduction to Quantum Graphs
,
Mathematical Surveys and Monographs
Vol.
186
(
American Mathematical Society
,
Providence, RI
,
2013
), p. xiv+270.
17.
T.
Kottos
and
U.
Smilansky
, “
Quantum chaos on graphs
,”
Phys. Rev. Lett.
79
,
4794
4797
(
1997
).
18.
O.
Bohigas
,
M. J.
Giannoni
, and
C.
Schmit
, “
Characterization of chaotic quantum spectra and universality of level fluctuation laws
,”
Phys. Rev. Lett.
52
,
1
4
(
1984
).
19.
L. J.
Landau
and
I. F.
Wilde
, “
On the Bose-Einstein condensation of an ideal gas
,”
Commun. Math. Phys.
70
,
43
51
(
1979
).
20.
E.
Lieb
and
W.
Liniger
, “
Exact analysis of an interacting Bose gas. I. The general solution and the ground state
,”
Phys. Rev.
130
,
1605
1616
(
1963
).
21.
J.
Bolte
and
J.
Kerner
, “
Quantum graphs with two-particle contact interactions
,”
J. Phys. A: Math. Theor.
46
,
045207
(
2013
).
22.
R.
Seiringer
,
J.
Yngvason
, and
V. A.
Zagrebnov
, “
Disordered Bose-Einstein condensates with interaction in one dimension
,”
J. Stat. Mech.: Theory Exp.
2012
,
P11007
.
23.
O.
Penrose
and
L.
Onsager
, “
Bose-Einstein condensation and liquid helium
,”
Phys. Rev.
104
,
576
584
(
1956
).
24.
E. H.
Lieb
,
R.
Seiringer
,
J. P.
Solovej
, and
J.
Yngvason
,
The Mathematics of the Bose Gas and Its Condensation
,
Oberwolfach Seminars
Vol.
34
(
Birkhäuser Verlag
,
Basel
,
2005
), p. viii+203.
25.
A. F.
Verbeure
,
Many-body Boson Systems
,
Theoretical and Mathematical Physics
(
Springer-Verlag London, Ltd.
,
London
,
2011
), p. x+189, half a century later.
26.
P.
Kuchment
, “
Quantum graphs. I. Some basic structures
,”
Waves Random Media
14
,
S107
S128
(
2004
).
27.
V.
Kostrykin
and
R.
Schrader
, “
Laplacians on metric graphs: Eigenvalues, resolvents and semigroups
,”
Contemp. Math.
415
,
201
225
(
2006
).
28.
S.
Gnutzman
and
U.
Smilansky
, “
Quantum graphs: Application to quantum chaos and universal spectral statistics
,”
Adv. Phys.
55
,
527
625
(
2006
).
29.
J.
Bolte
and
S.
Endres
, “
The trace formula for quantum graphs with general self-adjoint boundary conditions
,”
Ann. H. Poincaré
10
,
189
223
(
2009
).
30.
J.
Bolte
and
J.
Kerner
, “
Quantum graphs with singular two-particle interactions
,”
J. Phys. A: Math. Theor.
46
,
045206
(
2013
).
31.
V.
Kostrykin
and
R.
Schrader
, “
Kirchhoff’s rule for quantum wires
,”
J. Phys. A: Math. Gen.
32
,
595
630
(
1999
).
32.
G.
Gallavotti
,
Statistical Mechanics
(
Springer-Verlag
,
Berlin-Heidelberg
,
1999
).
33.
P. C.
Hohenberg
, “
Existence of long-range order in one and two dimensions
,”
Phys. Rev.
158
,
383
386
(
1967
).
34.
T.
Michoel
and
A.
Verbeure
, “
Nonextensive Bose-Einstein condensation model
,”
J. Math. Phys.
40
,
1268
1279
(
1999
).
35.
J.-B.
Bru
and
V. A.
Zagrebnov
, “
A model with coexistence of two kinds of Bose condensation
,”
J. Phys. A: Math. Gen.
33
,
449
(
2000
).
You do not currently have access to this content.