The main contribution of this paper is to derive an explicit expression for the fundamental precision bound, the Holevo bound, for estimating any two-parameter family of qubit mixed-states in terms of quantum versions of Fisher information. The obtained formula depends solely on the symmetric logarithmic derivative (SLD), the right logarithmic derivative (RLD) Fisher information, and a given weight matrix. This result immediately provides necessary and sufficient conditions for the following two important classes of quantum statistical models; the Holevo bound coincides with the SLD Cramér-Rao bound and it does with the RLD Cramér-Rao bound. One of the important results of this paper is that a general model other than these two special cases exhibits an unexpected property: the structure of the Holevo bound changes smoothly when the weight matrix varies. In particular, it always coincides with the RLD Cramér-Rao bound for a certain choice of the weight matrix. Several examples illustrate these findings.

1.
C. W.
Helstrom
,
Quantum Detection and Estimation Theory
(
Academic Press
,
New York
,
1976
).
2.
H.
Nagaoka
, inProceedings of 12th Symposium on Information Theory and Its Applications (1989), p. 577. Reprinted in the book.7 
3.
M.
Hayashi
and
K.
Matsumoto
,
Surikaiseki Kenkyusho Kokyuroku
1055
,
96
(
1998
). English translation is available in the book.7 
4.
R. D.
Gill
and
S.
Massar
,
Phys. Rev. A
61
,
042312
(
2000
).
5.
O. E.
Barndorff-Nielsen
and
R. D.
Gill
,
J. Phys. A: Math. Gen.
33
,
4481
(
2000
).
6.
M.
Hayashi
, inSelected Papers on Probability and Statistics American Mathematical Society Translations Series 2 (American Mathematical Society, 2009), Vol. 277, pp. 95-123. (It was originally published in Japanese in Bulletin of Mathematical Society of Japan, Sugaku, Vol. 55, No. 4, 368-391 (2003) . )
7.
Asymptotic Theory of Quantum Statistical Inference: Selected Papers
, edited by
M.
Hayashi
(
World Scientific
,
2005
).
8.
E.
Bagan
,
M.
Baig
,
R.
Muñoz-Tapia
, and
A.
Rodriguez
,
Phys. Rev. A
69
,
010304
(
2004
).
9.
E.
Bagan
,
M. A.
Ballester
,
R. D.
Gill
,
A.
Monras
, and
R.
Muñoz-Tapia
,
Phys. Rev. A
73
,
032301
(
2006
).
10.
M.
Hayashi
and
K.
Matsumoto
,
J. Math. Phys.
49
,
102101
(
2008
).
11.
M.
Guţă
and
J.
Kahn
,
Phys. Rev. A
73
,
052108
(
2006
).
12.
J.
Kahn
and
M.
Guţă
,
Commun. Math. Phys.
289
,
597
(
2009
).
13.
K.
Yamagata
,
A.
Fujiwara
, and
R. D.
Gill
,
Ann. Stat.
41
,
2197
(
2013
).
14.
R. D.
Gill
and
M. I.
Guţă
,
From Probability to Statistics and Back: High-Dimensional Models and Processes
,
IMS Collections
(
IMS
,
2013
), Vol.
9
, p.
105
.
15.
A. S.
Holevo
,
Probabilistic and Statistical Aspects of Quantum Theory
, 2nd ed. (
Edizioni della Normale, Pisa
,
2011
).
16.

An important consequence of regularity conditions is to avoid any singular behavior for the quantum Fisher information. See Refs. 13 and 15 for more rigorous mathematical details.

17.
H.
Yuen
and
M.
Lax
,
IEEE Trans. Inf. Theory
19
,
740
(
1973
).
18.

We remark that it is also possible to analyze POVMs whose measurement outcomes take values in Θ. See, for example, Ch. 6 of Holevo.15 

19.
A. W.
van der Vaart
,
Asymptotic Statistics
(
Cambridge University Press
,
1998
).
20.
S.
Amari
and
H.
Nagaoka
,
Methods of Informatioon Geometry
,
Translations of Mathematical Monograph
Vol.
191
(
AMS and Oxford University Press
,
2000
).
21.
H.
Nagaoka
,
IEICE Technical Report IT 89-429
(
1989
). Reprinted in the book.7 
23.
H.
Nagaoka
, inProceedings of 10th Symposium on Information Theory and Its Applications (1987), p. 241. English translation is available in the book.7 
24.
S. L.
Braunstein
and
C. M.
Caves
,
Phys. Rev. Lett.
72
,
3439
(
1994
).
25.
A.
Fujiwara
and
H.
Nagaoka
,
J. Math. Phys.
40
,
4227
(
1999
).
26.
H.
Nagaoka
, A series of seminars at the University of Electro-Communications, 2013.
27.
Y.
Watanabe
, Ph.D. thesis,
the University of Tokyo
,
2012
.
28.
K.
Matsumoto
,
J. Phys. A: Math. Gen.
35
,
3111
(
2002
).
29.
A.
Fujiwara
and
H.
Nagaoka
,
Phys. Lett. A
201
,
119
(
1995
).
30.
This equivalence, the third line of Eq. (82), was suggested by H. Nagaoka, private communication (2015).
31.
P. J. D.
Crowley
,
A.
Datta
,
M.
Barbieri
, and
I. A.
Walmsley
,
Phys. Rev. A
89
,
023845
(
2014
).
32.
M. D.
Vidrighin
,
G.
Donati
,
M. G.
Genoni
,
X.-M.
Jin
,
W. S.
Kolthammer
,
M. S.
Kim
,
A.
Datta
,
M.
Barbieri
, and
I. A.
Walmsley
,
Nat. Commun.
5
,
3532
(
2014
).
33.
H.
Nagaoka
,
Trans. Jpn. Soc. Indust. Appl. Math.
1
,
43
(
1991
). English translation is available in the book.7 
You do not currently have access to this content.