We prove that the bound state energies of the two-dimensional massive Dirac operator with dipole type potentials accumulate with exponential rate at the band edge. In fact we prove a corresponding formula of De Martino et al. [Phys. Rev. Lett. 112(18), 186603 (2014)].

1.
D. I.
Abramov
and
I. V.
Komarov
, “
Weakly bound states of a charged particle in a finite-dipole field
,”
Theor. Math. Phys.
13
(
2
),
1090
1098
(
1972
).
2.
J.-C.
Cuenin
and
H.
Siedentop
, “
Dipoles in graphene have infinitely many bound states
,”
J. Math. Phys.
55
(
12
),
122304
(
2014
).
3.
A.
De Martino
,
D.
Klöpfer
,
D.
Matrasulov
, and
R.
Egger
, “
Electric-dipole-induced universality for Dirac fermions in graphene
,”
Phys. Rev. Lett.
112
(
18
),
186603
(
2014
).
4.
T. M.
Dunster
, “
Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter
,”
SIAM J. Math. Anal.
21
(
4
),
995
1018
(
1990
).
5.
J. D.
Jackson
,
Classical Electrodynamics
, 1st ed. (
John Wiley & Sons, Inc.
,
New York-London-Sydney
,
1962
).
6.
N. N.
Khuri
,
A.
Martin
, and
T.-T.
Wu
, “
Bound states in n dimensions (especially n = 1 and n = 2)
,”
Few-Body Syst.
31
,
83
89
(
2002
).
7.
W.
Kirsch
and
B.
Simon
, “
Corrections to the classical behavior of the number of bound states of Schrödinger operators
,”
Ann. Phys.
183
(
1
),
122
130
(
1988
).
8.
N. W.
McLachlan
,
Theory and Application of Mathieu Functions
(
Clarenden Press
,
Oxford
,
1947
).
9.
S.
Rademacher
, “
Energieniveaus von Dipolen in Graphen
,” Master’s thesis, Mathematisches Institut der Ludwig-Maximilians-Universität München, Theresienstraße 39, 80333 München, May 2015.
10.
M.
Reed
and
B.
Simon
,
Analysis of Operators
, 1st ed.
Methods of Modern Mathematical Physics
Vol.
4
(
Academic Press
,
New York
,
1978
).
11.
E.
Shargorodsky
, “
On negative eigenvalues of two-dimensional Schrödinger operators
,”
Proc. London Math. Soc.
108
(
3
),
441
483
(
2013
).
12.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
, 1st ed. (
Cambridge University Press
,
Cambridge
,
1922
).
You do not currently have access to this content.