We develop a Lie algebraic approach to systematically calculate the evolution operator of a system described by a generalized two-dimensional quadratic Hamiltonian with time-dependent coefficients. Although the development of the Lie algebraic approach presented here is mainly motivated by the two-dimensional quadratic Hamiltonian, it may be applied to investigate the evolution operators of any Hamiltonian having a dynamical algebra with a large number of elements. We illustrate the method by finding the propagator and the Heisenberg picture position and momentum operators for a two-dimensional charge subject to uniform and constant electro-magnetic fields.

1.
G.
Harari
,
Y.
Ben-Aryeh
, and
A.
Mann
, “
Propagator for the general time-dependent harmonic oscillator with application to an ion trap
,”
Phys. Rev. A
84
,
062104
(
2011
).
2.
L.
Yan
,
M.
Feng
, and
K.
Wang
, “
Addendum to ‘quantum theory of the stability region of an ion in a Paul trap
,’”
Phys. Rev. A
89
,
035401
(
2014
).
3.
T. S.
Häberle
and
M.
Freyberger
, “
Entangled particles in a dynamically controlled trap
,”
Phys. Rev. A
89
,
052332
(
2014
).
4.
L. S.
Brown
, “
Quantum motion in a Paul trap
,”
Phys. Rev. Lett.
66
,
527
529
(
1991
).
5.
J. I.
Cirac
,
L. J.
Garay
,
R.
Blatt
,
A. S.
Parkins
, and
P.
Zoller
, “
Laser cooling of trapped ions: The influence of micromotion
,”
Phys. Rev. A
49
,
421
432
(
1994
).
6.
D.
Leibfried
,
R.
Blatt
,
C.
Monroe
, and
D.
Wineland
, “
Quantum dynamics of single trapped ions
,”
Rev. Mod. Phys.
75
,
281
324
(
2003
).
7.
S.
Mavadia
,
G.
Stutter
,
J. F.
Goodwin
,
D. R.
Crick
,
R. C.
Thompson
, and
D. M.
Segal
, “
Optical sideband spectroscopy of a single ion in a Penning trap
,”
Phys. Rev. A
89
,
032502
(
2014
).
8.
K.
Abe
and
T.
Hasegawa
, “
Quantum mechanics in rotating-radio-frequency traps and Penning traps with a quadrupole rotating field
,”
Phys. Rev. A
81
,
033402
(
2010
).
9.
B.
Baseia
,
S. S.
Mizrahi
, and
M. H. Y.
Moussa
, “
Generation of squeezing for a charged oscillator and for a charged particle in a time-dependent electromagnetic field
,”
Phys. Rev. A
46
,
5885
5889
(
1992
).
10.
A. B.
Nassar
, “
New quantum squeezed states for the time-dependent harmonic oscillator
,”
J. Opt. B: Quantum Semiclassical Opt.
4
,
S226
(
2002
).
11.
S. K.
Singh
and
S.
Mandal
, “
The solutions of the generalized classical and quantum harmonic oscillators with time dependent mass, frequency, two-photon parameter and external force: The squeezing effects
,”
Opt. Commun.
283
,
4685
4695
(
2010
).
12.
S.
Mandal
, “
On the squeezing of coherent light coupled to a driven damped harmonic oscillator with time dependent mass and frequency
,”
Phys. Lett. A
321
,
308
318
(
2004
).
13.
A. L.
Matacz
, “
Coherent state representation of quantum fluctuations in the early universe
,”
Phys. Rev. D
49
,
788
798
(
1994
).
14.
I.
Pedrosa
,
C.
Furtado
, and
A.
Rosas
, “
Exact linear invariants and quantum effects in the early universe
,”
Phys. Lett. B
651
,
384
387
(
2007
).
15.
D. G.
Vergel
and
E. J.
Villaseor
, “
The time-dependent quantum harmonic oscillator revisited: Applications to quantum field theory
,”
Ann. Phys.
324
,
1360
1385
(
2009
).
16.
P.
Caldirola
,
Nuovo Cimento
18
,
393
(
1941
).
17.
E.
Kanai
, “
On the quantisation of the dissipative systems
,”
Prog. Theor. Phys.
3
,
440
(
1948
).
18.
H.
Bateman
, “
On dissipative systems and related variational principles
,”
Phys. Rev.
38
,
815
819
(
1931
).
19.
C.-I.
Um
,
K.-H.
Yeon
, and
T. F.
George
, “
The quantum damped harmonic oscillator
,”
Phys. Rep.
362
,
63
192
(
2002
).
20.
J. M.
Manoyan
, “
Path integral evaluation of the bloch density matrix for an oscillator in a magnetic field
,”
J. Phys. A: Math. Gen.
19
,
3013
(
1986
).
21.
K. H.
Yeon
,
C. I.
Um
, and
T. F.
George
, “
Time-dependent general quantum quadratic Hamiltonian system
,”
Phys. Rev. A
68
,
052108
(
2003
).
22.
V.
Ibarra-Sierra
,
A.
Anzaldo-Meneses
,
J.
Cardoso
,
H.
Hernandez-Saldaña
,
A.
Kunold
, and
J.
Roa-Neri
, “
Quantum and classical dissipation of charged particles
,”
Ann. Phys.
335
,
86
107
(
2013
).
23.
Q.
Shi
,
M.
Khodas
,
A.
Levchenko
, and
M. A.
Zudov
, “
Phase-sensitive bichromatic photoresistance in a two-dimensional electron gas
,”
Phys. Rev. B
88
,
245409
(
2013
).
24.
X. L.
Lei
and
S. Y.
Liu
, “
Phase-sensitive magnetoresistance oscillations induced by commensurate bichromatic irradiations in a two-dimensional electron system
,”
J. Appl. Phys.
115
,
233711
(
2014
).
25.
J.
Iñarrea
, “
Interaction between two-dimensional quantum oscillators and time-dependent forces: Case of a harmonic force
,”
Phys. B: Condens. Matter
436
,
10
13
(
2014
).
26.
A.
Kunold
and
M.
Torres
, “
The role of inelastic processes in the temperature dependence of hall induced resistance oscillations
,”
Phys. B: Condens. Matter
425
,
78
82
(
2013
).
27.
Y.
Ben-Aryeh
, “
Squeezing and broadening effects in mechanical oscillators
,”
J. Phys. A: Math. Theor.
42
,
055307
(
2009
).
28.
I.
Guedes
, “
Solution of the Schrödinger equation for the time-dependent linear potential
,”
Phys. Rev. A
63
,
034102
(
2001
).
29.
H.
Bekkar
,
F.
Benamira
, and
M.
Maamache
, “
Comment on ‘Solution of the Schrödinger equation for the time-dependent linear potential
,’”
Phys. Rev. A
68
,
016101
(
2003
).
30.
I.
Urdaneta
,
L.
Sandoval
, and
A.
Palma
, “
On the algebraic approach to the time-dependent quadratic Hamiltonian
,”
J. Phys. A: Math. Theor.
43
,
385204
(
2010
).
31.
A.
Palma
,
M.
Villa
, and
L.
Sandoval
, “
On the time-dependent solutions of the Schrödinger’s equation. II. The one-mode field perturbed harmonic oscillator
,”
Int. J. Quantum Chem.
112
,
2441
2443
(
2012
).
32.
R. V.
Buniy
,
F.
Colombo
,
I.
Sabadini
, and
D. C.
Struppa
, “
Quantum harmonic oscillator with superoscillating initial datum
,”
J. Math. Phys.
55
,
113511
(
2014
).
33.
Z.
Yang
, “
Temporal evolution of instantaneous phonons in time-dependent harmonic oscillators
,”
J. Math. Phys.
56
,
032102
(
2015
).
34.
H. R.
Lewis
and
W. B.
Riesenfeld
, “
An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field
,”
J. Math. Phys.
10
,
1458
1473
(
1969
).
35.
A. L.
de Lima
,
A.
Rosas
, and
I.
Pedrosa
, “
On the quantum motion of a generalized time-dependent forced harmonic oscillator
,”
Ann. Phys.
323
,
2253
2264
(
2008
).
36.
M.
Maamache
,
Y.
Saadi
,
J. R.
Choi
, and
K. H.
Yeon
, “
Gaussian wave packet solution of the Schrodinger equation in the presence of a time-dependent linear potential
,”
J. Korean Phys. Soc.
56
,
1063
1067
(
2010
).
37.
K.
Hira
, “
Derivation of the harmonic oscillator propagator using the Feynman path integral and recursive relations
,”
Eur. J. Phys.
34
,
777
(
2013
).
38.
D. C.
Khandekar
and
S. V.
Lawande
, “
Exact solution of a time-dependent quantal harmonic oscillator with damping and a perturbative force
,”
J. Math. Phys.
20
,
1870
1877
(
1978
).
39.
R. P.
Feynman
, “
Space-time approach to non-relativistic quantum mechanics
,”
Rev. Mod. Phys.
20
,
367
387
(
1948
).
40.
R. P.
Feynman
, “
Mathematical formulation of the quantum theory of electromagnetic interaction
,”
Phys. Rev.
80
,
440
457
(
1950
).
41.
E.
Merzbarcher
,
Quantum Mechanics
, 3rd ed. (
John Wiley & Sons, Inc.
,
USA
,
1998
), Chap. 15.
42.
C.-Y.
Long
,
S.-J.
Qin
,
Z.-H.
Yang
, and
G.-J.
Guo
, “
Solution to the Schrödinger equation for the time-dependent potential
,”
Int. J. Theor. Phys.
48
,
981
985
(
2009
).
43.
M.
Feng
, “
Complete solution of the Schrödinger equation for the time-dependent linear potential
,”
Phys. Rev. A
64
,
034101
(
2001
).
44.
P.-G.
Luan
and
C.-S.
Tang
, “
Lewis-Riesenfeld approach to the solutions of the Schrödinger equation in the presence of a time-dependent linear potential
,”
Phys. Rev. A
71
,
014101
(
2005
).
45.
G.
Profilo
and
G.
Soliana
, “
Group-theoretical approach to the classical and quantum oscillator with time-dependent mass and frequency
,”
Phys. Rev. A
44
,
2057
2065
(
1991
).
46.
I. A.
Pedrosa
, “
Exact wave functions of a harmonic oscillator with time-dependent mass and frequency
,”
Phys. Rev. A
55
,
3219
3221
(
1997
).
47.
V. V.
Dodonov
and
V. I.
Man’ko
, “
Coherent states and the resonance of a quantum damped oscillator
,”
Phys. Rev. A
20
,
550
560
(
1979
).
48.
K.-H.
Yeon
,
S.-S.
Kim
,
Y.-M.
Moon
,
S.-K.
Hong
,
C.-I.
Um
, and
T. F.
George
, “
The quantum under-, critical- and over-damped driven harmonic oscillators
,”
J. Phys. A: Math. Gen.
34
,
7719
(
2001
).
49.
B. K.
Cheng
, “
On the propagator of a charged particle in a constant magnetic field and with a quadratic potential
,”
J. Phys. A: Math. Gen.
17
,
819
(
1984
).
50.
M.-L.
Liang
and
F.-L.
Zhang
, “
New forms of wavefunctions for the isotropic harmonic oscillator in a time-dependent magnetic field
,”
Phys. Scr.
73
,
677
(
2006
).
51.
C. A. S.
Ferreira
,
P. T. S.
Alencar
, and
J. M. F.
Bassalo
, “
Wave functions of a time-dependent harmonic oscillator in a static magnetic field
,”
Phys. Rev. A
66
,
024103
(
2002
).
52.
M.
Maamache
,
A.
Bounames
, and
N.
Ferkous
, “
Comment on ‘Wave functions of a time-dependent harmonic oscillator in a static magnetic field
,’”
Phys. Rev. A
73
,
016101
(
2006
).
53.
M. S.
Abdalla
and
P. G. L.
Leach
, “
Lie algebraic approach and quantum treatment of an anisotropic charged particle via the quadratic invariant
,”
J. Math. Phys.
52
,
083504
(
2011
).
54.
See supplementary material at http://dx.doi.org/10.1063/1.4947296 for Mathematica programs iealgebraic-spin.nb and iealgebraic-genquadratic.nb, the explicit form of the ucoefficients as functions ofa, α, and α ̇ and the M i matrices.
55.
I.
Wolfram Research
,
Mathematica 10.3.1.0
, Champaign, IL 61820-7237, USA, 1988-2015.
56.
W.
Magnus
, “
On the exponential solution of differential equations for a linear operator
,”
Commun. Pure Appl. Math.
7
,
649
673
(
1954
).
57.
J.
Wei
and
E.
Norman
, “
Lie algebraic solution of linear differential equations
,”
J. Math. Phys.
4
,
575
581
(
1963
).
58.
Y.
Alhassid
and
R. D.
Levine
, “
Connection between the maximal entropy and the scattering theoretic analyses of collision processes
,”
Phys. Rev. A
18
,
89
116
(
1978
).
59.
C. M.
Cheng
and
P. C. W.
Fung
, “
The evolution operator technique in solving the Schrodinger equation, and its application to disentangling exponential operators and solving the problem of a mass-varying harmonic oscillator
,”
J. Phys. A: Math. Gen.
21
,
4115
(
1988
).
60.
F.
Boldt
,
J. D.
Nulton
,
B.
Andresen
,
P.
Salamon
, and
K. H.
Hoffmann
, “
Casimir companion: An invariant of motion for Hamiltonian systems
,”
Phys. Rev. A
87
,
022116
(
2013
).
61.
V.
Ibarra-Sierra
,
J.
Sandoval-Santana
,
J.
Cardoso
, and
A.
Kunold
, “
Lie algebraic approach to the time-dependent quantum general harmonic oscillator and the bi-dimensional charged particle in time-dependent electromagnetic fields
,”
Ann. Phys.
362
,
83
117
(
2015
).
62.
J. E.
Santos
,
N. M. R.
Peres
, and
J. M. B. Lopes
dos Santos
, “
Evolution of squeezed states under the Fock-Darwin Hamiltonian
,”
Phys. Rev. A
80
,
053401
(
2009
).

Supplementary Material

You do not currently have access to this content.