We develop a Lie algebraic approach to systematically calculate the evolution operator of a system described by a generalized two-dimensional quadratic Hamiltonian with time-dependent coefficients. Although the development of the Lie algebraic approach presented here is mainly motivated by the two-dimensional quadratic Hamiltonian, it may be applied to investigate the evolution operators of any Hamiltonian having a dynamical algebra with a large number of elements. We illustrate the method by finding the propagator and the Heisenberg picture position and momentum operators for a two-dimensional charge subject to uniform and constant electro-magnetic fields.
REFERENCES
1.
G.
Harari
, Y.
Ben-Aryeh
, and A.
Mann
, “Propagator for the general time-dependent harmonic oscillator with application to an ion trap
,” Phys. Rev. A
84
, 062104
(2011
).2.
L.
Yan
, M.
Feng
, and K.
Wang
, “Addendum to ‘quantum theory of the stability region of an ion in a Paul trap
,’” Phys. Rev. A
89
, 035401
(2014
).3.
T. S.
Häberle
and M.
Freyberger
, “Entangled particles in a dynamically controlled trap
,” Phys. Rev. A
89
, 052332
(2014
).4.
L. S.
Brown
, “Quantum motion in a Paul trap
,” Phys. Rev. Lett.
66
, 527
–529
(1991
).5.
J. I.
Cirac
, L. J.
Garay
, R.
Blatt
, A. S.
Parkins
, and P.
Zoller
, “Laser cooling of trapped ions: The influence of micromotion
,” Phys. Rev. A
49
, 421
–432
(1994
).6.
D.
Leibfried
, R.
Blatt
, C.
Monroe
, and D.
Wineland
, “Quantum dynamics of single trapped ions
,” Rev. Mod. Phys.
75
, 281
–324
(2003
).7.
S.
Mavadia
, G.
Stutter
, J. F.
Goodwin
, D. R.
Crick
, R. C.
Thompson
, and D. M.
Segal
, “Optical sideband spectroscopy of a single ion in a Penning trap
,” Phys. Rev. A
89
, 032502
(2014
).8.
K.
Abe
and T.
Hasegawa
, “Quantum mechanics in rotating-radio-frequency traps and Penning traps with a quadrupole rotating field
,” Phys. Rev. A
81
, 033402
(2010
).9.
B.
Baseia
, S. S.
Mizrahi
, and M. H. Y.
Moussa
, “Generation of squeezing for a charged oscillator and for a charged particle in a time-dependent electromagnetic field
,” Phys. Rev. A
46
, 5885
–5889
(1992
).10.
A. B.
Nassar
, “New quantum squeezed states for the time-dependent harmonic oscillator
,” J. Opt. B: Quantum Semiclassical Opt.
4
, S226
(2002
).11.
S. K.
Singh
and S.
Mandal
, “The solutions of the generalized classical and quantum harmonic oscillators with time dependent mass, frequency, two-photon parameter and external force: The squeezing effects
,” Opt. Commun.
283
, 4685
–4695
(2010
).12.
S.
Mandal
, “On the squeezing of coherent light coupled to a driven damped harmonic oscillator with time dependent mass and frequency
,” Phys. Lett. A
321
, 308
–318
(2004
).13.
A. L.
Matacz
, “Coherent state representation of quantum fluctuations in the early universe
,” Phys. Rev. D
49
, 788
–798
(1994
).14.
I.
Pedrosa
, C.
Furtado
, and A.
Rosas
, “Exact linear invariants and quantum effects in the early universe
,” Phys. Lett. B
651
, 384
–387
(2007
).15.
D. G.
Vergel
and E. J.
Villaseor
, “The time-dependent quantum harmonic oscillator revisited: Applications to quantum field theory
,” Ann. Phys.
324
, 1360
–1385
(2009
).16.
P.
Caldirola
, Nuovo Cimento
18
, 393
(1941
).17.
E.
Kanai
, “On the quantisation of the dissipative systems
,” Prog. Theor. Phys.
3
, 440
(1948
).18.
H.
Bateman
, “On dissipative systems and related variational principles
,” Phys. Rev.
38
, 815
–819
(1931
).19.
C.-I.
Um
, K.-H.
Yeon
, and T. F.
George
, “The quantum damped harmonic oscillator
,” Phys. Rep.
362
, 63
–192
(2002
).20.
J. M.
Manoyan
, “Path integral evaluation of the bloch density matrix for an oscillator in a magnetic field
,” J. Phys. A: Math. Gen.
19
, 3013
(1986
).21.
K. H.
Yeon
, C. I.
Um
, and T. F.
George
, “Time-dependent general quantum quadratic Hamiltonian system
,” Phys. Rev. A
68
, 052108
(2003
).22.
V.
Ibarra-Sierra
, A.
Anzaldo-Meneses
, J.
Cardoso
, H.
Hernandez-Saldaña
, A.
Kunold
, and J.
Roa-Neri
, “Quantum and classical dissipation of charged particles
,” Ann. Phys.
335
, 86
–107
(2013
).23.
Q.
Shi
, M.
Khodas
, A.
Levchenko
, and M. A.
Zudov
, “Phase-sensitive bichromatic photoresistance in a two-dimensional electron gas
,” Phys. Rev. B
88
, 245409
(2013
).24.
X. L.
Lei
and S. Y.
Liu
, “Phase-sensitive magnetoresistance oscillations induced by commensurate bichromatic irradiations in a two-dimensional electron system
,” J. Appl. Phys.
115
, 233711
(2014
).25.
J.
Iñarrea
, “Interaction between two-dimensional quantum oscillators and time-dependent forces: Case of a harmonic force
,” Phys. B: Condens. Matter
436
, 10
–13
(2014
).26.
A.
Kunold
and M.
Torres
, “The role of inelastic processes in the temperature dependence of hall induced resistance oscillations
,” Phys. B: Condens. Matter
425
, 78
–82
(2013
).27.
Y.
Ben-Aryeh
, “Squeezing and broadening effects in mechanical oscillators
,” J. Phys. A: Math. Theor.
42
, 055307
(2009
).28.
I.
Guedes
, “Solution of the Schrödinger equation for the time-dependent linear potential
,” Phys. Rev. A
63
, 034102
(2001
).29.
H.
Bekkar
, F.
Benamira
, and M.
Maamache
, “Comment on ‘Solution of the Schrödinger equation for the time-dependent linear potential
,’” Phys. Rev. A
68
, 016101
(2003
).30.
I.
Urdaneta
, L.
Sandoval
, and A.
Palma
, “On the algebraic approach to the time-dependent quadratic Hamiltonian
,” J. Phys. A: Math. Theor.
43
, 385204
(2010
).31.
A.
Palma
, M.
Villa
, and L.
Sandoval
, “On the time-dependent solutions of the Schrödinger’s equation. II. The one-mode field perturbed harmonic oscillator
,” Int. J. Quantum Chem.
112
, 2441
–2443
(2012
).32.
R. V.
Buniy
, F.
Colombo
, I.
Sabadini
, and D. C.
Struppa
, “Quantum harmonic oscillator with superoscillating initial datum
,” J. Math. Phys.
55
, 113511
(2014
).33.
Z.
Yang
, “Temporal evolution of instantaneous phonons in time-dependent harmonic oscillators
,” J. Math. Phys.
56
, 032102
(2015
).34.
H. R.
Lewis
and W. B.
Riesenfeld
, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field
,” J. Math. Phys.
10
, 1458
–1473
(1969
).35.
A. L.
de Lima
, A.
Rosas
, and I.
Pedrosa
, “On the quantum motion of a generalized time-dependent forced harmonic oscillator
,” Ann. Phys.
323
, 2253
–2264
(2008
).36.
M.
Maamache
, Y.
Saadi
, J. R.
Choi
, and K. H.
Yeon
, “Gaussian wave packet solution of the Schrodinger equation in the presence of a time-dependent linear potential
,” J. Korean Phys. Soc.
56
, 1063
–1067
(2010
).37.
K.
Hira
, “Derivation of the harmonic oscillator propagator using the Feynman path integral and recursive relations
,” Eur. J. Phys.
34
, 777
(2013
).38.
D. C.
Khandekar
and S. V.
Lawande
, “Exact solution of a time-dependent quantal harmonic oscillator with damping and a perturbative force
,” J. Math. Phys.
20
, 1870
–1877
(1978
).39.
R. P.
Feynman
, “Space-time approach to non-relativistic quantum mechanics
,” Rev. Mod. Phys.
20
, 367
–387
(1948
).40.
R. P.
Feynman
, “Mathematical formulation of the quantum theory of electromagnetic interaction
,” Phys. Rev.
80
, 440
–457
(1950
).41.
E.
Merzbarcher
, Quantum Mechanics
, 3rd ed. (John Wiley & Sons, Inc.
, USA
, 1998
), Chap. 15.42.
C.-Y.
Long
, S.-J.
Qin
, Z.-H.
Yang
, and G.-J.
Guo
, “Solution to the Schrödinger equation for the time-dependent potential
,” Int. J. Theor. Phys.
48
, 981
–985
(2009
).43.
M.
Feng
, “Complete solution of the Schrödinger equation for the time-dependent linear potential
,” Phys. Rev. A
64
, 034101
(2001
).44.
P.-G.
Luan
and C.-S.
Tang
, “Lewis-Riesenfeld approach to the solutions of the Schrödinger equation in the presence of a time-dependent linear potential
,” Phys. Rev. A
71
, 014101
(2005
).45.
G.
Profilo
and G.
Soliana
, “Group-theoretical approach to the classical and quantum oscillator with time-dependent mass and frequency
,” Phys. Rev. A
44
, 2057
–2065
(1991
).46.
I. A.
Pedrosa
, “Exact wave functions of a harmonic oscillator with time-dependent mass and frequency
,” Phys. Rev. A
55
, 3219
–3221
(1997
).47.
V. V.
Dodonov
and V. I.
Man’ko
, “Coherent states and the resonance of a quantum damped oscillator
,” Phys. Rev. A
20
, 550
–560
(1979
).48.
K.-H.
Yeon
, S.-S.
Kim
, Y.-M.
Moon
, S.-K.
Hong
, C.-I.
Um
, and T. F.
George
, “The quantum under-, critical- and over-damped driven harmonic oscillators
,” J. Phys. A: Math. Gen.
34
, 7719
(2001
).49.
B. K.
Cheng
, “On the propagator of a charged particle in a constant magnetic field and with a quadratic potential
,” J. Phys. A: Math. Gen.
17
, 819
(1984
).50.
M.-L.
Liang
and F.-L.
Zhang
, “New forms of wavefunctions for the isotropic harmonic oscillator in a time-dependent magnetic field
,” Phys. Scr.
73
, 677
(2006
).51.
C. A. S.
Ferreira
, P. T. S.
Alencar
, and J. M. F.
Bassalo
, “Wave functions of a time-dependent harmonic oscillator in a static magnetic field
,” Phys. Rev. A
66
, 024103
(2002
).52.
M.
Maamache
, A.
Bounames
, and N.
Ferkous
, “Comment on ‘Wave functions of a time-dependent harmonic oscillator in a static magnetic field
,’” Phys. Rev. A
73
, 016101
(2006
).53.
M. S.
Abdalla
and P. G. L.
Leach
, “Lie algebraic approach and quantum treatment of an anisotropic charged particle via the quadratic invariant
,” J. Math. Phys.
52
, 083504
(2011
).54.
See supplementary material at http://dx.doi.org/10.1063/1.4947296 for Mathematica programs iealgebraic-spin.nb and iealgebraic-genquadratic.nb, the explicit form of the ucoefficients as functions ofa, α, and and the matrices.
55.
I.
Wolfram Research
, Mathematica 10.3.1.0
, Champaign, IL 61820-7237, USA, 1988-2015.56.
W.
Magnus
, “On the exponential solution of differential equations for a linear operator
,” Commun. Pure Appl. Math.
7
, 649
–673
(1954
).57.
J.
Wei
and E.
Norman
, “Lie algebraic solution of linear differential equations
,” J. Math. Phys.
4
, 575
–581
(1963
).58.
Y.
Alhassid
and R. D.
Levine
, “Connection between the maximal entropy and the scattering theoretic analyses of collision processes
,” Phys. Rev. A
18
, 89
–116
(1978
).59.
C. M.
Cheng
and P. C. W.
Fung
, “The evolution operator technique in solving the Schrodinger equation, and its application to disentangling exponential operators and solving the problem of a mass-varying harmonic oscillator
,” J. Phys. A: Math. Gen.
21
, 4115
(1988
).60.
F.
Boldt
, J. D.
Nulton
, B.
Andresen
, P.
Salamon
, and K. H.
Hoffmann
, “Casimir companion: An invariant of motion for Hamiltonian systems
,” Phys. Rev. A
87
, 022116
(2013
).61.
V.
Ibarra-Sierra
, J.
Sandoval-Santana
, J.
Cardoso
, and A.
Kunold
, “Lie algebraic approach to the time-dependent quantum general harmonic oscillator and the bi-dimensional charged particle in time-dependent electromagnetic fields
,” Ann. Phys.
362
, 83
–117
(2015
).62.
J. E.
Santos
, N. M. R.
Peres
, and J. M. B. Lopes
dos Santos
, “Evolution of squeezed states under the Fock-Darwin Hamiltonian
,” Phys. Rev. A
80
, 053401
(2009
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.