In this paper, we show the compatibility of the so-called “dressing field method,” which allows a systematic reduction of gauge symmetries, with the inclusion of diffeomorphisms in the Becchi-Rouet-Stora-Tyutin (BRST) algebra of a gauge theory. The robustness of the scheme is illustrated on two examples where Cartan connections play a significant role. The former is General Relativity, while the latter concerns the second-order conformal structure where one ends up with a BRST algebra handling both the Weyl residual symmetry and diffeomorphisms of spacetime. We thereby provide a geometric counterpart to the BRST cohomological treatment used in Boulanger [J. Math. Phys. 46, 053508 (2005)] in the construction of a Weyl covariant tensor calculus.

1.
N.
Boulanger
,
J. Math. Phys.
46
,
053508
(
2005
).
2.
C.
Yang
,
Selected Papers (1945-1980), with Commentary
(
World Scientific Publishing Company
,
2005
).
3.
R.
Stora
, in
Progress in Gauge Field Theory, Cargèse 1983
,
Nato Science Series B
Vol.
115
, edited by
G.
’t Hooft
, et al.
(
Plenum Press
,
1984
).
4.
L.
Baulieu
and
J.
Thierry-Mieg
,
Phys. Lett. B
145
,
53
(
1984
).
5.
L.
Baulieu
and
M.
Bellon
,
Nucl. Phys. B
266
,
75
(
1986
).
6.
F.
Langouche
,
T.
Schücker
, and
R.
Stora
,
Phys. Lett. B
145
,
342
(
1984
).
7.

We use the denomination introduced in Ref. 17.

8.
C.
Fournel
,
J.
François
,
S.
Lazzarini
, and
T.
Masson
,
Int. J. Geom. Methods Mod. Phys.
11
,
1450016
(
2014
).
9.
J.
François
,
S.
Lazzarini
, and
T.
Masson
,
Phys. Rev. D
91
,
045014
(
2015
).
10.
J.
François
,
S.
Lazzarini
, and
T.
Masson
,
J. High Energy Phys.
2015
,
195
.
11.
J.
François
, “
Reductions of gauge symmetries: A new geometrical approach
,” Ph.D. thesis,
Aix-Marseille University
,
2014
.
12.
Y.
Ne’eman
,
T.
Regge
, and
J.
Thierry-Mieg
, in
Matter Particles
, edited by
R.
Ruffini
and
Y.
Verbin
(
Imperial College Press and World Scientific Publishing Co. Pte. Ltd.
,
1978
), pp.
301
303
.
13.
L.
Baulieu
and
J.
Thierry-Mieg
,
Nucl. Phys. B
197
,
477
(
1982
).
14.
R.
Stora
,
Fortschr. Phys.
54
,
175
(
2006
); e-print arXiv:math-ph/0511014 [math-ph].
15.

Global aspects require careful consideration which might lead one to look for a better adapted geometrical framework.

16.
G.
Bandelloni
,
Phys. Rev. D
38
,
1156
(
1988
).
17.
R. A.
Bertlmann
,
Anomalies in Quantum Field Theory
,
International Series of Monographs on Physics
Vol.
91
(
Oxford University Press
,
1996
).
18.
G.
Barnich
,
F.
Brandt
, and
M.
Henneaux
,
Phys. Rep.
338
,
439
(
2000
); e-print arXiv:hep-th/0002245 [hep-th].
19.
C.
Becchi
,
A.
Rouet
, and
R.
Stora
,
Ann. Phys.
98
,
287
(
1976
).
20.
M.
Dubois-Violette
,
J. Geom. Phys.
3
,
525
(
1986
).
21.
R.
Stora
, private communication (
2010
).
22.

As stated in Ref. 43, the Lie algebra of diffeomorphisms is anti-isomorphic to the Lie algebra of vector fields. This explains why the factor 1/2 occurs without a minus sign. Thus upon substituting ξ by −ξ one recovers variations obtained in Ref. 6.

23.
T.
Masson
and
J. C.
Wallet
, “
A remark on the spontaneous symmetry breaking mechanism in the standard model
,” e-print arXiv:1001.1176 (
2011
).
24.

This means that G′ is to be suitable for this definition, in particular, it shares the same representations as H (at least the adjoint representation and ρ).

25.

To some extent, H′ is identified to be a subgroup of H along which the gauge invariance can be restored. One may also check that the complement HH is stable under H.

26.
D.
Garajeu
,
R.
Grimm
, and
S.
Lazzarini
,
J. Math. Phys.
36
,
7043
(
1995
).
27.
S.
Lazzarini
and
C.
Tidei
,
Lett. Math. Phys.
85
,
27
(
2008
).
28.

Likewise, performing the same substitution starting from second presentation (2.15) of BRSTξ would result in an algebra for the composite fields formally identical to (2.15) but with pure gauge ghost (u−1vu + u−1σu) − u−1Lξu.

29.

The reader is referred to Ref. 17, (Chap.12).

30.
Gauge Theories of Gravitation: A Reader with Commentaries
, edited by
M.
Blagojević
and
F.
Hehl
(
World Scientific, Imperial College Press
,
2013
), p. 656.
31.
R.
Sharpe
,
Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program
,
Graduate Texts in Mathematics
Vol.
166
(
Springer
,
New York, Berlin, Heidelberg
,
1997
).
32.
S.
Kobayashi
,
Transformation Groups in Differential Geometry
,
Classics in Mathematics
Vol.
70
(
Spinger-Verlag
,
Berlin
,
1972
).
33.

Indeed this does not depend on the expression of the shifted ghost.

34.
L.
Bonora
,
P.
Pasti
, and
M.
Tonin
,
Phys. Lett. B
149
,
346
(
1984
).
35.
L.
Bonora
,
P.
Pasti
, and
M.
Tonin
,
J. Math. Phys.
27
,
2259
(
1986
).
36.
L.
Bonora
,
P.
Pasti
, and
M.
Bregola
,
Classical Quantum Gravity
3
,
635
(
1986
).
37.
O.
Moritsch
and
M.
Schweda
,
Helv. Phys. Acta
67
,
289
(
1994
); e-print arXiv:hep-th/9405133.
38.
N.
Boulanger
,
Phys. Rev. Lett.
98
,
261302
(
2007
).
39.
N.
Boulanger
,
J. High Energy Phys.
2007
,
069
; e-print arXiv:0704.2472 [hep-th].
40.
K.
Ogiue
,
Kodai Math. Semin. Rep.
19
,
193
(
1967
).
41.
T. H.
Go
,
H. A.
Kastrup
, and
D. H.
Mayer
,
Rep. Math. Phys.
6
,
395
(
1974
).
42.

Due to the successive dressings, the “hat” symbol is dropped out to the benefit of a lower index.

43.
J.
Milnor
, in
Relativity, Groups and Topology II: Les Houches, Session XL, 1983
edited by
B.
DeWitt
and
R.
Stora
(
Elsevier Science Publishers
,
1984
), pp.
1009
1057
.
You do not currently have access to this content.