We consider Hamiltonian closures of the Vlasov equation using the phase-space moments of the distribution function. We provide some conditions on the closures imposed by the Jacobi identity. We completely solve some families of examples. As a result, we show that imposing that the resulting reduced system preserves the Hamiltonian character of the parent model shapes its phase space by creating a set of Casimir invariants as a direct consequence of the Jacobi identity. We exhibit three main families of Hamiltonian models with two, three, and four degrees of freedom aiming at modeling the complexity of the bunch of particles in the Vlasov dynamics.
REFERENCES
1.
P. J.
Channell
, “The moment approach to charges particle beam dynamics
,” IEEE Trans. Nucl. Sci.
NS-30
, 2607
(1983
).2.
M. M.
Berz
and W. P.
Lysenko
, “Moments in particle-in-cell simulations
,” IEEE Trans. Nucl. Sci.
NS-32
, 2559
(1985
).3.
W. P.
Lysenko
and M.
Overley
, “Moment invariants for particle beams
,” AIP Conf. Proc.
117
, 323
(1988
).4.
P. J.
Channell
, “The beam-beam interaction as a discrete Lie-Poisson dynamical system
,” AIP Conf. Proc.
214
, 464
(1990
).5.
D. D.
Holm
, W. P.
Lysenko
, and J. C.
Scovel
, “Moment invariants for the Vlasov equation
,” J. Math. Phys.
31
, 1610
(1990
).6.
A. J.
Dragt
, F.
Neri
, and G.
Rangarajan
, “General moment invariants for linear Hamiltonian systems
,” Phys. Rev. A
45
, 2572
(1992
).7.
C.
Scovel
and A.
Weinstein
, “Finite dimensional Lie-Poisson approximations to Vlasov-Poisson equations
,” Commun. Pure Appl. Math.
97
, 683
(1994
).8.
P. J.
Channell
, “Canonical integration of the collisionless Boltzmann equation
,” Ann. N. Y. Acad. Sci.
751
, 152
(1995
).9.
W. P.
Lysenko
, “The moment approach to high-order accelerator beam optics
,” Nucl. Instrum. Methods A
363
, 90
(1995
).10.
W.
Lysenko
and Z.
Parsa
, “Beam matching and halo control
,” in Proceedings of the 1997 Particle Accelerator Conference
(Vancouver, BC
, 1997
), Vol. 2
, pp. 1917
–1919
.11.
B. A.
Shadwick
and J. S.
Wurtele
, “General moment model of beam transport
,” in Proceedings of the 1999 Particle Accelerator Conference
(New York
, 1999
), p. 2888
.12.
B. A.
Shadwick
, F.
Lee
, M. M.
Tassi
, and G. M.
Tarkenton
, “Self-consistent Hamiltonian model of beam transport in a laser-driven plasma accelerator
,” AIP Conf. Proc.
1299
, 221
(2010
).13.
B. A.
Shadwick
, G. M.
Tarkenton
, E.
Esarey
, and F. M.
Lee
, “Hamiltonian reductions for modelling relativistic laser-plasma interactions
,” Commun. Nonlinear Sci. Numer. Simul.
17
, 2153
(2012
).14.
F. M.
Lee
and B. A.
Shadwick
, “Modeling asymmetric beams using higher-order phase-space moments
,” AIP Conf. Proc.
1507
, 393
(2012
).15.
E. G.
Evstatiev
and B. A.
Shadwick
, “Variational formulation of particle algorithms for kinetic plasma simulations
,” J. Comput. Phys.
245
, 376
(2013
).16.
J. E.
Marsden
and T. R.
Ratiu
, Introduction to Mechanics and Symmetry
(Springer-Verlag
, Berlin
, 2002
).17.
P. J.
Morrison
, “Hamiltonian description of the ideal fluid
,” Rev. Mod. Phys.
70
, 467
(1998
).18.
M.
Perin
, C.
Chandre
, P. J.
Morrison
, and E.
Tassi
, “Hamiltonian closures for fluid models with four moments by dimensional analysis
,” J. Phys. A: Math. Theor.
48
, 275501
(2015
).19.
M.
Perin
, C.
Chandre
, P. J.
Morrison
, and E.
Tassi
, “Hamiltonian fluid closures of the Vlasov-Ampère equations: From water-bags to N moment models
,” Phys. Plasmas
22
, 092309
(2015
).20.
J.
Gibbons
, D. D.
Holm
, and C.
Tronci
, “Geometry of Vlasov kinetic moments: A bosonic Fock space for the symmetric Schouten bracket
,” Phys. Lett. A
372
, 4184
(2008
).21.
F.
Gay-Balmaz
and C.
Tronci
, “Vlasov moment flows and geodesics on the Jacobi group
,” J. Math. Phys.
53
, 123502
(2012
).22.
A. J.
Dragt
, F.
Neri
, and G.
Rangarajan
, “Lie algebraic treatment of linear and nonlinear beam dynamics
,” Annu. Rev. Nucl. Part. Sci.
38
, 455
(1988
).23.
M.
Bojowald
and A.
Skirzewski
, “Effective equations of motion for quantum systems
,” Rev. Math. Phys.
18
, 713
(2006
).24.
D.
Brizuela
, “Statistical moments for classical and quantum dynamics: Formalism and generalized uncertainty relations
,” Phys. Rev. D
90
, 085027
(2014
).© 2016 AIP Publishing LLC.
2016
AIP Publishing LLC
You do not currently have access to this content.