Determining the number of stable phase-locked solutions for locally coupled Kuramoto models is a long-standing mathematical problem with important implications in biology, condensed matter physics, and electrical engineering among others. We investigate Kuramoto models on networks with various topologies and show that different phase-locked solutions are related to one another by loop currents. The latter take only discrete values, as they are characterized by topological winding numbers. This result is generically valid for any network and also applies beyond the Kuramoto model, as long as the coupling between oscillators is antisymmetric in the oscillators’ coordinates. Motivated by these results, we further investigate loop currents in Kuramoto-like models. We consider loop currents in nonoriented n-node cycle networks with nearest-neighbor coupling. Amplifying on earlier works, we give an algebraic upper bound N 2 Int [ n / 4 ] + 1 for the number N of different, linearly stable phase-locked solutions. We show that the number of different stable solutions monotonically decreases as the coupling strength is decreased. Furthermore stable solutions with a single angle difference exceeding π/2 emerge as the coupling constant K is reduced, as smooth continuations of solutions with all angle differences smaller than π/2 at higher K. In a cycle network with nearest-neighbor coupling, we further show that phase-locked solutions with two or more angle differences larger than π/2 are all linearly unstable. We point out similarities between loop currents and vortices in superfluids and superconductors as well as persistent currents in superconducting rings and two-dimensional Josephson junction arrays.

1.
S. H.
Strogatz
,
SYNC, the Emerging Science of Spontaneous Order
(
Penguin Books
,
London
,
2003
).
3.
Y.
Kuramoto
,
Prog. Theor. Phys. Suppl.
79
,
223
(
1984
).
5.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
6.
F.
Dörfler
and
F.
Bullo
,
Automatica
50
,
1539
(
2014
).
7.
G. B.
Ermentrout
,
J. Math. Biol.
22
,
1
(
1985
).
8.
J. L.
van Hemme
and
W. F.
Wreskinski
,
J. Stat. Phys.
72
,
145
(
1993
).
9.
D.
Aeyels
and
J. A.
Rogge
,
Prog. Theor. Phys.
112
,
921
(
2004
).
10.
R. E.
Mirollo
and
S. H.
Strogatz
,
Physica D
205
,
249
(
2005
).
12.
A. J.
Korsak
,
IEEE Trans. Power Appar. Syst.
PAS-91
,
1093
(
1972
).
13.
A. R.
Bergen
and
V.
Vittal
,
Power Systems Analysis
(
Prentice Hall
,
2000
).
14.
Y.
Tamura
,
H.
Mori
, and
S.
Iwamoto
,
IEEE Trans. Power Appar. Syst.
PAS-102
,
1115
(
1983
).
15.
A.
Klos
and
J.
Wojcicka
,
Int. J. Electr. Power Energy Syst.
13
,
268
(
1991
).
16.
J.
Baillieul
and
C. I.
Byrnes
,
IEEE Trans. Circuits Syst.
29
,
724
(
1982
).
17.
H. D.
Nguyen
and
K. S.
Turitsyn
, in
2014 IEEE PES General Meeting - Conference Exposition
(
IEEE
,
2014
).
18.
D.
Mehta
,
N.
Daleo
,
F.
Dörfler
, and
J. D.
Hauenstein
,
Chaos
25
,
053103
(
2015
).
19.
N.
Janssens
and
A.
Kamagate
,
Int. J. Electr. Power Energy Syst.
25
,
591
(
2003
).
20.
L.
Onsager
,
Nuovo Cimento
6
,
249
(
1949
).
21.
R. P.
Feynman
,
Prog. Low Temp. Phys.
1
,
34
(
1955
).
22.
A. A.
Abrikosov
,
Sov. Phys. JETP
5
,
1174
(
1957
).
23.
N.
Byers
and
C. N.
Yang
,
Phys. Rev. Lett.
7
,
46
(
1961
).
24.
K. A.
Matveev
,
A. I.
Larkin
, and
L. I.
Glazman
,
Phys. Rev. Lett.
89
,
096802
(
2002
).
25.
G.
Rastelli
,
I. M.
Pop
, and
F. W. J.
Hekking
,
Phys. Rev. B
87
,
174513
(
2013
).
26.
W. A.
Bukhsh
,
A.
Grothey
,
K. I. M.
McKinnon
, and
P. A.
Trodden
,
IEEE Trans. Power Syst.
28
,
4780
(
2013
).
27.
J. A.
Rogge
and
D.
Aeyels
,
J. Phys. A
37
,
11135
(
2004
).
28.
J.
Ochab
and
P. F.
Góra
,
Acta Phys. Pol. B Proc. Suppl.
3
,
453
(
2010
).
29.
P. F. C.
Tilles
,
F. F.
Ferreira
, and
H. A.
Cerdeira
,
Phys. Rev. E
83
,
066206
(
2011
).
30.
T. K.
Roy
and
A.
Lahiri
,
Chaos, Solitons Fractals
45
,
888
(
2012
).
31.
D. A.
Wiley
,
S. H.
Strogatz
, and
M.
Girvan
,
Chaos
16
,
015103
(
2006
).
32.
P. W.
Anderson
,
Rev. Mod. Phys.
38
,
298
(
1966
).
33.
G.
Blatter
,
M. V.
Feigel’man
,
V. B.
Geshkenbein
,
A. I.
Larkin
, and
V. M.
Vinokur
,
Rev. Mod. Phys.
66
,
1125
(
1994
).
34.
R.
Fazio
and
H.
van der Zant
,
Phys. Rep.
355
,
235
(
2001
).
35.
C. J.
Tavora
and
O. J. M.
Smith
,
IEEE Trans. Power Appar. Syst.
PAS-91
,
1138
(
1972
).
36.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
New York
,
1986
).
37.
F.
Dörfler
,
M.
Chertkov
, and
F.
Bullo
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
2005
(
2013
).
38.
N.
Biggs
,
Algebraic Graph Theory
, 2nd ed. (
Cambridge University Press
,
1993
).
39.
W.
Cheney
,
Analysis for Applied Mathematics
(
Springer
,
New York
,
2001
).
40.
W.
Gander
,
M. J.
Gander
, and
F.
Kwok
,
Scientific Computing - An Introduction Using Maple and MATLAB
(
Springer International Publishing
,
2014
).
41.
A.-L.
Do
,
S.
Boccaletti
, and
T.
Gross
,
Phys. Rev. Lett.
108
,
194102
(
2012
).
You do not currently have access to this content.