We extend Brill’s positive mass theorem to a large class of asymptotically flat, maximal, U(1)2-invariant initial data sets on simply connected four dimensional manifolds Σ. Moreover, we extend the local mass angular momenta inequality result [A. Alaee and H. K. Kunduri, Classical Quantum Gravity 32(16), 165020 (2015)] for U(1)2 invariant black holes to the case with nonzero stress energy tensor with positive matter density and energy-momentum current invariant under the above symmetries.

1.
A.
Alaee
and
H. K.
Kunduri
, “
Proof of the local mass-angular momenta inequality for u(1)2 invariant black holes
,”
Classical Quantum Gravity
32
(
16
),
165020
(
2015
).
2.
D. R.
Brill
, “
On the positive definite mass of the Bondi-Weber-Wheeler time-symmetric gravitational waves
,”
Ann. Phys.
7
(
4
),
466
483
(
1959
).
3.
S.
Dain
, “
Proof of the angular momentum-mass inequality for axisymmetric black holes
,”
J. Differ. Geom.
79
(
1
),
33
67
(
2008
).
4.
G. W.
Gibbons
and
G.
Holzegel
, “
The positive mass and isoperimetric inequalities for axisymmetric black holes in four and five dimensions
,”
Classical Quantum Gravity
23
(
22
),
6459
(
2006
).
5.
P. T.
Chruściel
, “
Mass and angular-momentum inequalities for axi-symmetric initial data sets. I. Positivity of mass
,”
Ann. Phys.
323
(
10
),
2566
2590
(
2008
).
6.
M.
Khuri
and
G.
Weinstein
,
The Positive Mass Theorem for Multiple Rotating Charged Black Holes
(
2015
).
7.
S.
Dain
,
M.
Khuri
,
G.
Weinstein
, and
S.
Yamada
, “
Lower bounds for the area of black holes in terms of mass, charge, and angular momentum
,”
Phys. Rev. D
88
(
2
),
024048
(
2013
).
8.
Y. S.
Cha
and
M. A.
Khuri
, “
Deformations of axially symmetric initial data and the mass-angular momentum inequality
,”
Ann. Henri Poincare
16
(
3
),
841
896
(
2015
).
9.
Y. S.
Cha
and
M. A.
Khuri
, “
Deformations of charged axially symmetric initial data and the mass angular momentum charge inequality
,”
Ann. Henri Poincare
16
(
12
),
2881
2918
(
2015
).
10.
A.
Alaee
and
H. K.
Kunduri
, “
Mass functional for initial data in 4 + 1-dimensional spacetime
,”
Phys. Rev. D
90
(
12
),
124078
(
2014
).
11.
S.
Hollands
,
J.
Holland
, and
A.
Ishibashi
, “
Further restrictions on the topology of stationary black holes in five dimensions
,” in
Annales Henri Poincare
(
Springer
,
2011
), Vol.
12
, pp.
279
301
.
12.
P.
Orlik
and
F.
Raymond
, “
Actions of the torus on 4-manifolds. I
,”
Trans. Am. Math. Soc.
152
(
2
),
531
559
(
1970
).
13.
S.
Hollands
and
S.
Yazadjiev
, “
Uniqueness theorem for 5-dimensional black holes with two axial killing fields
,”
Commun. Math. Phys.
283
(
3
),
749
768
(
2008
).
14.
J.
Noguchi
and
T.
Ochiai
,
Geometric Function Theory in Several Complex Variables
(
American Mathematical Society
,
1990
), Vol.
80
.
15.
R.
Bartnik
, “
The mass of an asymptotically flat manifold
,”
Commun. Pure Appl. Math.
39
(
5
),
661
693
(
1986
).
16.
T.
Harmark
, “
Domain structure of black hole space-times
,”
Phys. Rev. D
80
(
2
),
024019
(
2009
).
17.
A.
Alaee
, “
Geometric inequalities for initial data with symmetries
,” Ph.D. thesis,
Memorial University
,
2015
.
18.
P.
Figueras
,
K.
Murata
, and
H. S.
Reall
, “
Black hole instabilities and local Penrose inequalities
,”
Classical Quantum Gravity
28
(
22
),
225030
(
2011
).
19.

The replaced preprint version contains an improved discussion of the geometry of Σ.

20.

This condition is asymptotic flatness15 for s ≥ 2 and when we write f = os(rl) it means ∂β1⋯∂βpf = o(rlp) for 0 ≤ ps.

21.

It may be possible to prove this assumption is unnecessary (see Ref. 5 for the three-dimensional case).

22.

We will refer to this as the “mass” hereafter.

23.

There is a typo in Equation (A.1) of Ref. 16 and the correct expression yields (2.42) for Ric(h̃).

24.

There is a sign mistake in Ref. 10 because of the orientation. The sign of summation term over rods should be positive.

You do not currently have access to this content.