We analyze entropic uncertainty relations for two orthogonal measurements on a N-dimensional Hilbert space, performed in two generic bases. It is assumed that the unitary matrix U relating both bases is distributed according to the Haar measure on the unitary group. We provide lower bounds on the average Shannon entropy of probability distributions related to both measurements. The bounds are stronger than those obtained with use of the entropic uncertainty relation by Maassen and Uffink, and they are optimal up to additive constants. We also analyze the case of a large number of measurements and obtain strong entropic uncertainty relations, which hold with high probability with respect to the random choice of bases. The lower bounds we obtain are optimal up to additive constants and allow us to prove a conjecture by Wehner and Winter on the asymptotic behavior of constants in entropic uncertainty relations as the dimension tends to infinity. As a tool we develop estimates on the maximum operator norm of a submatrix of a fixed size of a random unitary matrix distributed according to the Haar measure, which are of independent interest.

1.
W.
Heisenberg
, “
Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik
,”
Z. Phys.
43
,
172
198
(
1927
).
2.
E. H.
Kennard
, “
Zur Quantenmechanik einfacher Bewegungstypen
,”
Z. Phys.
44
(
4–5
),
326
352
(
1927
).
3.
H. P.
Robertson
, “
The uncertainty principle
,”
Phys. Rev.
34
,
163
164
(
1929
).
4.
I.
Białynicki-Birula
and
J.
Mycielski
, “
Uncertainty relations for information entropy in wave mechanics
,”
Commun. Math. Phys.
44
(
2
),
129
132
(
1975
).
5.
D.
Deutsch
, “
Uncertainty in quantum measurements
,”
Phys. Rev. Lett.
50
(
9
),
631
633
(
1983
).
6.
H.
Maassen
and
J. B. M.
Uffink
, “
Generalized entropic uncertainty relations
,”
Phys. Rev. Lett.
60
(
12
),
1103
1106
(
1988
).
7.
S.
Wehner
and
A.
Winter
, “
Entropic uncertainty relations—A survey
,”
New J. Phys.
12
(
2
),
025009
(
2010
).
8.
I.
Białynicki-Birula
and
Ł.
Rudnicki
, “
Entropic uncertainty relations in quantum physics
,” in
Statistical Complexity
, edited by
K. D.
Sen
(
Springer Netherlands
,
2011
), pp.
1
34
.
9.
M.
Berta
,
M.
Christandl
,
R.
Colbeck
,
J. M.
Renes
, and
R.
Renner
, “
The uncertainty principle in the presence of quantum memory
,”
Nat. Phys.
6
,
659
(
2010
).
10.
A. E.
Rastegin
, “
Notes on entropic uncertainty relations beyond the scope of Riesz’s theorem
,”
Int. J. Theor. Phys.
51
(
4
),
1300
1315
(
2012
).
11.
S.
Zozor
,
G. M.
Bosyk
, and
M.
Portesi
, “
General entropy-like uncertainty relations in finite dimensions
,”
Phys. A: Math. Theor.
47
(
49
),
495302
(
2014
); preprint arXiv:1311.5602 (
2013
).
12.
A.
Grudka
,
M.
Horodecki
,
P.
Horodecki
,
R.
Horodecki
,
W.
Kłobus
, and
Ł.
Pankowski
, “
Conjectured strong complementary-correlations tradeoff
,”
Phys. Rev. A
88
,
032106
(
2013
).
13.
S.
Friedland
,
V.
Gheorghiu
, and
G.
Gour
, “
Universal uncertainty relations
,”
Phys. Rev. Lett.
111
,
230401
(
2013
).
14.
Z.
Puchała
,
Ł.
Rudnicki
, and
K.
Życzkowski
, “
Majorization entropic uncertainty relations
,”
J. Phys. A
46
,
272002
(
2013
).
15.
P.
Coles
and
M.
Piani
, “
Improved entropic uncertainty relations and information exclusion relations
,”
Phys. Rev. A
89
,
022112
(
2014
).
16.
Ł.
Rudnicki
,
Z.
Puchała
, and
K.
Życzkowski
, “
Strong majorization entropic uncertainty relations
,”
Phys. Rev. A
89
,
052115
(
2014
).
17.
V.
Narasimhachar
,
A.
Poostindouz
, and
G.
Gour
, “
The principle behind the uncertainty principle
,” preprint arXiv:1505.02223 (
2015
).
18.
Z.
Puchała
,
Ł.
Rudnicki
,
K.
Chabuda
,
K.
Paraniak
, and
K.
Życzkowski
, “
Certainty relations, mutual entanglement and non-displacable manifolds
,”
Phys. Rev. A
92
,
032109
(
2015
).
19.
P.
Coles
,
M.
Berta
,
M.
Tomamichel
, and
S.
Wehner
, “
Entropic uncertainty relations and their applications
,” preprint arXiv:1511.04857 (
2015
).
20.
P.
Hayden
,
D.
Leung
,
P. W.
Shor
, and
A.
Winter
, “
Randomizing quantum states: Constructions and applications
,”
Commun. Math. Phys.
250
(
2
),
371
391
(
2004
).
21.
O.
Fawzi
,
P.
Hayden
, and
P.
Sen
, “
From low-distortion norm embeddings to explicit uncertainty relations and efficient information locking
,”
J. ACM
60
(
6
),
44
61
(
2013
).
22.
K.
Życzkowski
and
H.-J.
Sommers
, “
Truncations of random unitary matrices
,”
J. Phys. A
33
(
10
),
2045
2057
(
2000
).
23.
I.
Bengtsson
and
K.
Życzkowski
,
Geometry of Quantum States: An Introduction to Quantum Entanglement
(
Cambridge University Press
,
Cambridge
,
2006
).
24.
I. D.
Ivanovic
, “
An inequality for the sum of entropies of unbiased quantum measurements
,”
J. Phys. A: Math. Gen.
25
,
363
364
(
1992
).
25.
J.
Sánchez
, “
Entropic uncertainty and certainty relations for complementary observables
,”
Phys. Lett. A
173
,
233
239
(
1993
).
26.
M. A.
Ballester
and
S.
Wehner
, “
Entropic uncertainty relations and locking: Tight bounds for mutually unbiased bases
,”
Phys. Rev. A
75
,
022319
(
2007
).
27.
T.
Jiang
, “
Maxima of entries of Haar distributed matrices
,”
Probab. Theory Relat. Fields
131
(
1
),
121
144
(
2005
).
28.
K. R. W.
Jones
, “
Entropy of random quantum states
,”
J. Phys. A
23
(
23
),
L1247
L1251
(
1990
).
29.
D. P.
DiVincenzo
,
M.
Horodecki
,
D. W.
Leung
,
J. A.
Smolin
, and
B. M.
Terhal
, “
Locking classical correlations in quantum states
,”
Phys. Rev. Lett.
92
,
67902
(
2004
).
30.
F.
Dupuis
,
J.
Florjanczyk
,
P.
Hayden
, and
D.
Leung
, “
The locking-decoding frontier for generic dynamics
,”
Proc. R. Soc. A
469
(
2159
),
20130289
(
2013
).
31.
M.
Ledoux
,
The Concentration of Measure Phenomenon
,
Mathematical Surveys and Monographs
Vol.
89
(
American Mathematical Society
,
Providence, RI
,
2001
).
32.
E. S.
Meckes
and
M. W.
Meckes
, “
Spectral measures of powers of random matrices
,”
Electron. Commun. Probab.
18
(
78
),
1
13
(
2013
).
33.
G.
Pisier
,
The Volume of Convex Bodies and Banach Space Geometry
,
Cambridge Tracts in Mathematics
Vol.
94
(
Cambridge University Press
,
Cambridge
,
1989
).
34.
S.
Kotz
,
N.
Balakrishnan
, and
N. L.
Johnson
,
Continuous Multivariate Distributions. Volume 1. Models and Applications
, 2nd ed.,
Wiley Series in Probability and Statistics: Applied Probability and Statistics
(
Wiley-Interscience
,
New York
,
2000
).
You do not currently have access to this content.