We investigate the interplay between mutual unbiasedness and product bases for multiple qudits of possibly different dimensions. A product state of such a system is shown to be mutually unbiased to a product basis only if each of its factors is mutually unbiased to all the states which occur in the corresponding factors of the product basis. This result implies both a tight limit on the number of mutually unbiased product bases which the system can support and a complete classification of mutually unbiased product bases for multiple qubits or qutrits. In addition, only maximally entangled states can be mutually unbiased to a maximal set of mutually unbiased product bases.
REFERENCES
1.
C. H.
Bennett
and G.
Brassard
, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing
(IEEE
, 1984
), Vol. 175
, p. 8
.2.
I. D.
Ivanović
, J. Phys. A: Math. Gen.
14
, 3241
(1981
).3.
W. K.
Wootters
and B. D.
Fields
, Ann. Phys.
191
, 363
(1989
).4.
M.
Grassl
, in Proceedings of ERATO Conference on Quantum Information Science
(EQIS
, 2004
) ; e-print arXiv:quant-ph/0406175.5.
P.
Jaming
, M.
Matolcsi
, P.
Móra
, F.
Szöllősi
, and M.
Weiner
, J. Phys. A: Math. Theor.
42
, 245305
(2009
).6.
D.
McNulty
and S.
Weigert
, J. Phys. A: Math. Theor.
45
, 102001
(2012
).7.
P.
Butterley
and W.
Hall
, Phys. Lett. A
369
, 5
(2007
).8.
S.
Brierley
and S.
Weigert
, Phys. Rev. A
78
, 042312
(2008
).9.
A.
Klappenecker
and M.
Rötteler
, Finite Fields and Applications
, Lecture Notes in Computer Science
Vol. 2948
(Springer
, Berlin
, 2004
), pp. 137
–144
.10.
11.
M.
Wieśniak
, T.
Paterek
, and A.
Zeilinger
, New J. Phys.
13
, 053047
(2011
).12.
B.
Pammer
, Mutually Unbiased Quantum Bases: Existence, Entanglement, Information
(Rinton Press
, Wien
, 2015
).13.
D.
McNulty
and S.
Weigert
, J. Phys. A: Math. Theor.
45
, 135307
(2012
).14.
15.
D.
McNulty
and S.
Weigert
, Int. J. Quantum Inf.
10
, 1250056
(2012
).© 2016 AIP Publishing LLC.
2016
AIP Publishing LLC
You do not currently have access to this content.