The set of Entanglement Saving (ES) quantum channels is introduced and characterized. These are completely positive, trace preserving transformations which when acting locally on a bipartite quantum system initially prepared into a maximally entangled configuration, preserve its entanglement even when applied an arbitrary number of times. In other words, a quantum channel ψ is said to be ES if its powers ψn are not entanglement-breaking for all integers n. We also characterize the properties of the Asymptotic Entanglement Saving (AES) maps. These form a proper subset of the ES channels that is constituted by those maps that not only preserve entanglement for all finite n but which also sustain an explicitly not null level of entanglement in the asymptotic limit n → ∞. Structure theorems are provided for ES and for AES maps which yield an almost complete characterization of the former and a full characterization of the latter.

1.
R.
Horodecki
,
P.
Horodecki
,
M.
Horodecki
, and
K.
Horodecki
,
Rev. Mod. Phys.
81
,
865
(
2009
).
2.
W.
Zurek
,
Rev. Mod. Phys.
75
,
715
(
2003
).
3.
A. S.
Holevo
and
V.
Giovannetti
,
Rep. Prog. Phys.
75
,
046001
(
2012
).
4.
M. M.
Wolf
,
Quantum Channels & Operations
, Lecture notes available at https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf (
2012
) (unpublished).
5.
A. S.
Holevo
,
Quantum Systems, Channels, Information
,
de Gruyter Studies in Mathematical Physics
(
de Gruyter
,
2012
).
6.
M.
Horodecki
,
P. W.
Shor
, and
M. B.
Ruskai
,
Rev. Math. Phys.
15
,
629
(
2003
).
7.
A.
De Pasquale
and
V.
Giovannetti
,
Phys. Rev. A
86
,
052302
(
2012
).
8.
L.
Lami
and
V.
Giovannetti
,
J. Math. Phys.
56
,
092201
(
2015
).
9.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
Cambridge
,
2000
).
10.
R.
Kadison
,
Ann. Math.
56
,
494
503
(
1952
).
11.
S. L.
Woronowicz
,
Rep. Math. Phys.
10
,
165
(
1976
).
12.
R.
Bhatia
,
Positive Definite Matrices
(
Princeton University Press
,
2007
).
13.
E. P.
Wigner
,
Gruppentheorie
(
Friedrich Vieweg und Sohn
,
Braunschweig, Germany
,
1931
).
14.
C. S.
Sharma
and
D. F.
Almeida
,
Ann. Phys.
64
,
300
(
1990
).
15.
A. S.
Holevo
,
Russ. Math. Surv.
53
,
1295
1331
(
1999
).
16.
M. B.
Ruskai
,
Rev. Math. Phys.
15
,
643
(
2003
).
17.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
Cambridge
,
1990
).
18.
G.
Lindblad
,
Lett. Math. Phys.
47
,
189
196
(
1999
).
19.
M. M.
Wolf
and
D.
Perez–Garcia
, e-print arXiv:1005.4545v1 [quant-ph] (
2010
).
20.
A.
De Pasquale
,
A.
Mari
,
A.
Porzio
, and
V.
Giovannetti
,
Phys. Rev. A
87
,
062307
(
2013
).
21.
L.
Gurvits
and
H.
Barnum
,
Phys. Rev. A
68
,
042312
(
2003
).
22.
A.
Peres
,
Phys. Rev. Lett.
77
,
1413
(
1996
).
23.
M.
Horodecki
,
P.
Horodecki
, and
R.
Horodecki
,
Phys. Lett. A
223
,
1
(
1996
).
24.
R. A.
Horn
and
C. R.
Johnson
,
Topics in Matrix Analysis
(
Cambridge University Press
,
Cambridge
,
1994
).
25.
K.
Chen
and
L.-A.
Wu
,
Quant. Inf. Comput.
3
(
3
),
193
202
(
2003
).
26.
O.
Rudolph
,
J. Phys. A
36
,
5825
(
2003
).
27.
O.
Rudolph
,
Phys. Rev. A
67
,
032312
(
2003
).
28.
I.
Bengtsson
and
K.
Życzkowski
,
Geometry of Quantum States
(
Cambridge University Press
,
Cambridge
,
2006
).
29.
G.
Frobenius
, “
Uber die Darstellung der endlichen Gruppen durch lineare Substitutionen
,”
Sitzungsber. Deutsch. Akad. Wiss. Berlin
994
1015
(
1897
).
30.
J.
Dieudonné
,
Arch. Math.
1
,
282
287
(
1949
).
31.
C. K.
Li
and
N. K.
Tsing
,
Linear Algebra Appl.
162-164
,
217
235
(
1992
).
32.
C. K.
Li
and
S.
Pierce
,
Am. Math. Mon.
108
,
591
605
(
2001
).
33.
M. M.
Wolf
and
J. I.
Cirac
,
Commun. Math. Phys.
279
,
147
(
2008
).
34.
M.
Fukuda
,
I.
Nechita
, and
M. M.
Wolf
,
IEEE Trans. Inf. Theory
61
(
4
),
1851
1859
(
2015
).
35.
M.
Mozrzymas
,
A.
Rutkowski
, and
M.
Studziński
, e-print arXiv:1505.06422 [quant-ph] (
2015
).
You do not currently have access to this content.