This paper constructs a nonlinear filtering framework that admits appearances of new information processes at random times by introducing piecewise enlargements of filtrations and proposes a new energy-based Schrodinger evolution expressed as a stochastic differential equation on a complex Hilbert space. Each information process is modeled as the sum of a random variable taking the eigenvalues of a Hamiltonian and an independent Brownian bridge noise. It is shown that under a piecewise enlarged filtration, the wave function is a jump-diffusion process until it collapses at some terminal time. In between discontinuities, the dynamics of the state vector are governed by different Wiener processes and diffusion coefficients. This motivates the introduction of an inclusive chain of Kolmogorov probability spaces or a *-isomorphic chain of commutative von Neumann probability spaces, on which the quantum system evolves differently based on the number of active information processes. The expectation of the Hamiltonian at a given state is the solution of a second-order nonlinear differential equation determined by one of the possible regimes that the quantum system belongs to. It is shown that the collapse rate is a submartingale with positive jumps and the Shannon entropy process is a supermartingale with expected negative jumps when passing to higher-order probability spaces. The framework is extended to the case when the Hamiltonian is modeled as a function of a set of commutative operators, where each operator is associated with a different piecewise enlarged filtration.

1.
J.
von Neumann
,
Mathematische Grundlagen der Quantenmechanik
(
Springer
,
Berlin
,
1932
).
2.
G.
Lüders
,
Ann. Phys.
8
,
322
(
1951
).
3.
N.
Wiener
and
A.
Siegel
,
Phys. Rev.
91
,
1551
(
1953
).
4.
6.
G. C.
Ghirardi
,
A.
Rimini
, and
T.
Webber
,
Phys. Rev. D
34
,
470
(
1986
).
8.
G. C.
Ghirardi
,
P.
Pearle
, and
A.
Rimini
,
Phys. Rev. A
42
,
78
(
1990
).
9.
N.
Gisin
and
I.
Percival
,
J. Phys. A
25
,
5677
(
1992
).
10.
P. J.
Fitzsimmons
,
J.
Pitman
, and
M.
Yor
, “
Seminar on stochastic processes
,” in
Progress in Probability
, edited by
E.
Cinlar
, et al
(
Birkhauser
,
1992
), Vol.
33
, p.
101
.
11.
L. P.
Hughston
,
Proc. R. Soc. A
452
,
953
(
1996
).
12.
P.
Howard
and
K.
Zumbrun
,
Stat. Probab. Lett.
45
,
379
(
1999
).
13.
S. L.
Adler
and
L. P.
Horwitz
,
J. Math. Phys.
41
,
2485
(
2000
).
14.
S. L.
Adler
,
D. C.
Brody
,
T. A.
Brun
, and
L. P.
Hughston
,
J. Phys. A
34
,
8795
(
2001
).
16.
D. C.
Brody
and
L. P.
Hughston
,
J. Math. Phys.
43
,
5254
(
2002
).
17.
D. C.
Brody
and
L. P.
Hughston
,
Proc. R. Soc. A
458
,
1117
(
2002
).
18.
S. L.
Adler
,
Phys. Rev. D
67
,
025007
(
2003
).
19.
D. C.
Brody
,
L. P.
Hughston
, and
J.
Syroka
,
Proc. R. Soc. A
459
,
2297
(
2003
).
20.
D. C.
Brody
and
L. P.
Hughston
,
J. Math. Phys.
46
,
082101
(
2005
).
22.
D. C.
Brody
,
I. C.
Constantinou
,
J. D. C.
Dear
, and
L. P.
Hughston
,
J. Phys. A
39
,
11029
11051
(
2006
).
23.
D. C.
Brody
and
L. P.
Hughston
,
J. Phys. A
39
,
833
(
2006
).
24.
D. C.
Brody
,
L. P.
Hughston
, and
A.
Macrina
,
Int. J. Theor. Appl. Finance
11
(
1
),
107
(
2008
).
25.
D. C.
Brody
,
M. H. A.
Davis
,
R. L.
Friedman
, and
L. P.
Hughston
,
Proc. R. Soc. A
465
,
1103
(
2009
).
26.
E.
Hoyle
,
L. P.
Hughston
, and
A.
Macrina
,
Stochastic Processes Appl.
121
(
4
),
856
(
2011
).
You do not currently have access to this content.