In the Hilbert space of a quantum particle the standard coherent-state resolution of unity is written in terms of a phase-space integration of the outer product z z . Because no pair of coherent states is orthogonal, one can represent the closure relation in non-standard ways, in terms of a single phase-space integration of the “unlike” outer product z z , z′≠z. We show that all known representations of this kind have a common ground and that our reasoning extends to spin coherent states. These unlike identities make it possible to write formal expressions for a phase-space path integral, where the role of the Hamiltonian H is played by a weak energy value H w e a k . Therefore, in this context, we can speak of weak values without any mention to measurements. The quantity H w e a k appears as the ruler of the phase-space dynamics in the semiclassical limit.

1.
O.
Christensen
,
An Introduction to Frames and Riesz Bases
(
Birkhauser
,
Boston
,
2002
).
2.
R. J.
Glauber
,
Phys. Rev.
131
,
2766
(
1963
).
3.
R. J.
Glauber
,
Rev. Mod. Phys.
78
,
1267
(
2006
).
4.
V.
Bargmann
,
Commun. Pure Appl. Math.
14
,
187
(
1961
).
5.
K. E.
Cahill
,
Phys. Rev.
138
,
B1566
(
1965
).
6.
P.
Domokos
,
P.
Adam
, and
J.
Janszky
,
Phys. Rev. A
50
,
4293
(
1994
).
7.
P.
Adam
,
I.
Földesi
, and
J.
Janszky
,
Phys. Rev. A
49
,
1281
(
1994
).
8.
J.
Janszky
and
A. V.
Vinogradov
,
Phys. Rev. Lett.
64
,
2771
(
1990
).
9.
S.
Szabó
,
P.
Domokos
,
P.
Adam
, and
J.
Janszky
,
Phys. Lett. A
241
,
203
(
1998
).
10.
J. R.
Klauder
and
E. C. G.
Sudarshan
,
Fundamentals of Quantum Optics
(
W. A. Benjamin
,
New York
,
1968
).
11.
H. G.
Solari
,
J. Math. Phys.
27
,
1351
(
1986
).
12.
F.
Parisio
,
Prog. Theor. Phys.
124
,
53
(
2010
).
13.
M.
Baranger
,
M. A. M.
de Aguiar
,
F.
Keck
,
H. J.
Korsch
, and
B.
Schellhaass
,
J. Phys. A: Math. Gen.
34
,
7227
(
2001
).
14.
H. G.
Solari
,
J. Math. Phys.
28
,
1097
(
1987
).
15.
Y.
Aharonov
,
D. Z.
Albert
, and
L.
Vaidman
,
Phys. Rev. Lett.
60
,
1351
(
1988
).
16.
A. M.
Perelomov
,
Generalized Coherent Satates and Their Applications
(
Springer-Verlag
,
Berlin
,
1986
).
17.
J. R.
Klauder
and
B.
Skagerstam
,
Generalized Coherent Sattes and their Applications
(
World Scientific
,
Singapore
,
1985
).
18.
J.-P.
Gazeau
,
Coherent States in Quantum Physics
(
Wiley-VHC
,
Weinheim
,
2009
).
19.
L. M.
Johansen
,
Phys. Lett. A
329
,
184
(
2004
).
20.
E.
Schrödinger
,
Naturwiss.
14
,
664
(
1926
).
21.
E.
Schrödinger
,
Collected Papers on Wave Mechanics
(
Chelsea Publishing Company
,
New York
,
1928
).
22.
A. M. O.
de Almeida
,
Phys. Rep.
295
,
266
(
1998
).
23.
A. D.
Ribeiro
,
M.
Novaes
, and
M. A. M.
de Aguiar
,
Phys. Rev. Lett.
95
,
050405
(
2005
).
24.
A. D.
Ribeiro
,
F.
Parisio
, and
M. A. M.
de Aguiar
,
J. Phys. A: Math. Theor.
42
,
105301
(
2009
).
25.
26.
J.
Magueijo
and
L.
Bethke
, “
New ground state for quantum gravity
,” e-print arXiv:1207.0637 (
2012
).
27.
R.
Frassek
,
N.
Kanning
,
Y.
Ko
, and
M.
Staudacher
,
Nucl. Phys. B
883
,
374
(
2014
).
29.
30.
F.
Bagarello
, “
Deformed canonical (anti-)commutation relations and non self-adjoint Hamiltonians
,” in
Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects
, edited by
F.
Bagarello
,
J. P.
Gazeau
,
F. H.
Szafraniec
, and
M.
Znojil
(
John Wiley and Sons, Inc
,
Hoboken, NJ
,
2015
), p.
121
.
31.
S. T.
Ali
,
F.
Bagarello
, and
J.-P.
Gazeau
,
Symmetry, Integrability Geom.: Methods Appl.
11
,
078
(
2015
).
You do not currently have access to this content.