We consider Yang-Mills theory with N = 1 super-translation group in eleven auxiliary dimensions as the structure group. The gauge theory is defined on a direct product manifold Σ3 × S1, where Σ3 is a three-dimensional Lorentzian manifold and S1 is a circle. We show that in the infrared limit, when the metric on S1 is scaled down, the Yang-Mills action supplemented by a Wess-Zumino-type term reduces to the action of an M2-brane.

1.
P. A. M.
Dirac
, “
An extensible model of the electron
,”
Proc. R. Soc. London, Ser. A
268
,
57
(
1962
).
2.
P. S.
Howe
and
R. W.
Tucker
, “
A locally supersymmetric and reparametrization invariant action for a spinning membrane
,”
J. Phys. A
10
,
L155
(
1977
).
3.
J.
Hoppe
, “
Quantum theory of a massless relativistic surface and a two-dimensional bound state problem
,” Ph.D. thesis,
MIT
, Cambridge, MA, USA,
1982
.
4.
J.
Hughes
,
J.
Liu
, and
J.
Polchinski
, “
Supermembranes
,”
Phys. Lett. B
180
,
370
(
1986
).
5.
E.
Bergshoeff
,
E.
Sezgin
, and
P. K.
Townsend
, “
Supermembranes and eleven-dimensional supergravity
,”
Phys. Lett. B
189
,
75
(
1987
).
6.
B.
de Wit
,
J.
Hoppe
, and
H.
Nicolai
, “
On the quantum mechanics of supermembranes
,”
Nucl. Phys. B
305
,
545
(
1988
).
7.
J. A.
de Azcarraga
and
P. K.
Townsend
, “
Superspace geometry and classification of supersymmetric extended objects
,”
Phys. Rev. Lett.
62
,
2579
(
1989
).
8.
J.
Hoppe
, “
Relativistic membranes
,”
J. Phys. A
46
,
023001
(
2013
).
9.
J.
Bagger
,
N.
Lambert
,
S.
Mukhi
, and
C.
Papageorgakis
, “
Multiple membranes in M-theory
,”
Phys. Rept.
527
,
1
(
2013
); e-print arXiv:1203.3546 [hep-th].
10.
S.
Dostoglou
and
D. A.
Salamon
, “
Self-dual instantons and holomorphic curves
,”
Ann. Math.
139
,
581
(
1994
).
11.
S. K.
Donaldson
and
R. P.
Thomas
, “
Gauge theory in higher dimensions
,” in
The Geometric Universe
(
Oxford University Press
,
Oxford
,
1998
).
12.
J. A.
Harvey
,
G. W.
Moore
, and
A.
Strominger
, “
Reducing S-duality to T-duality
,”
Phys. Rev. D
52
,
7161
(
1995
); e-print arXiv:hep-th/9501022.
13.
N.
Seiberg
and
E.
Witten
, “
Gauge dynamics and compactification to three-dimensions
,” in
The Mathematical Beauty of Physics: Saclay
(
World Scientific
,
Singapore
,
1997
), pp.
333
366
, e-print arXiv:hep-th/9607163.
14.
N.
Seiberg
, “
Notes on theories with 16 supercharges
,”
Nucl. Phys. Proc. Suppl.
67
,
158
(
1998
); e-print arXiv:hep-th/9705117.
15.
N. S.
Manton
, “
A remark on the scattering of BPS monopoles
,”
Phys. Lett. B
110
,
54
(
1982
).
16.
D.
Stuart
, “
The geodesic approximation for the Yang-Mills-Higgs equations
,”
Commun. Math. Phys.
166
,
149
(
1994
).
17.
G.
Tian
, “
Gauge theory and calibrated geometry
,”
Ann. Math.
151
,
193
(
2000
); e-print arXiv:math/0010015 [math-dg].
18.
A.
Deser
,
O.
Lechtenfeld
, and
A. D.
Popov
, “
Sigma-model limit of Yang-Mills instantons in higher dimensions
,”
Nucl. Phys. B
894
,
361
(
2015
); e-print arXiv:1412.4258 [hep-th].
19.
A. D.
Popov
, “
String theories as the adiabatic limit of Yang-Mills theory
,”
Phys. Rev. D
92
,
045003
(
2015
); e-print arXiv:1505.07733 [hep-th].
20.
A. D.
Popov
, “
Green-Schwarz superstring as subsector of Yang-Mills theory
,” e-print arXiv:1506.02175 [hep-th] (unpublished).
21.
S. K.
Donaldson
, “
Boundary value problems for Yang-Mills fields
,”
J. Geom. Phys.
8
,
89
(
1992
).
22.
D. A.
Salamon
, “
Notes on flat connections and the loop group
,” Preprint, University of Warwick, 1998.
23.
E. J.
Weinberg
and
P.
Yi
, “
Magnetic monopole dynamics, supersymmetry, and duality
,”
Phys. Rept.
438
,
65
(
2007
); e-print arXiv:hep-th/0609055.
24.

See Refs. 8 and 9 for historical reviews and more references.

25.

The direct product structure is not necessary for the application of the adiabatic method. In general, it is enough if there is a fibration ZX or if X is a calibrated submanifold of Z.

26.

In the physics literature this limit is called infrared or low-energy limit (see e.g., Refs. 12–14).

27.

In fact, in Refs. 12–14 the authors considered N=4 and N=2 super-Yang-Mills theories but the restriction to the pure Yang-Mills subsector does not change the picture.

28.

For simplicity, we restrict ourselves to the pure Yang-Mills subsector of the supersymmetric theories in Refs. 13 and 14.

You do not currently have access to this content.