The present paper shows that general relativity in the Arnowitt-Deser-Misner formalism admits a BV-BFV formulation. More precisely, for any d + 1 ≠ 2 (pseudo-) Riemannian manifold M with space-like or time-like boundary components, the BV data on the bulk induces compatible BFV data on the boundary. As a byproduct, the usual canonical formulation of general relativity is recovered in a straightforward way.
REFERENCES
1.
A. S.
Cattaneo
, P.
Mnëv
, and N.
Reshetikhin
, “Classical BV theories on manifolds with boundary
,” Commun. Math. Phys.
332
(2
), 535
-603
(2014
).2.
I. A.
Batalin
and G. A.
Vilkovisky
, “Gauge algebra and quantization
,” Phys. Lett. B
102
(1
), 27
-31
(1981
).3.
I. A.
Batalin
and E. S.
Fradkin
, “A generalized canonical formalism and quantization of reducible gauge theories
,” Phys. Lett. B
122
(2
), 157
-164
(1983
).4.
I. A.
Batalin
and G. A.
Vilkovisky
, “Relativistic S-matrix of dynamical systems with boson and fermion costraints
,” Phys. Lett. B
69
(3
), 309
-312
(1977
).5.
6.
J.
Stasheff
, “Homological reduction of constrained Poisson algebras
,” J. Differential Geom.
45
, 221
-240
(1997
).7.
A. S.
Cattaneo
, P.
Mnëv
, and N.
Reshetikhin
, “Semiclassical quantization of Lagrangian field theories
,” in Mathematical Aspects of Quantum Field Theories
, Mathematical Physics Studies
(Springer
, 2015
), pp. 275
-324
.8.
A. S.
Cattaneo
, P.
Mnëv
, and N.
Reshetikhin
, “Perturbative quantum gauge theories on manifolds with boundary
,” e-print arXiv:1507.01221.9.
M.
Atiyah
, “Topological quantum field theories
,” Inst. Hautes Etud. Sci. Publ. Math.
68
, 175
-186
(1988
).10.
G.
Segal
, “The definition of conformal field theory
,” in Differential Geometrical Methods in Theoretical Physics
(Springer
, Netherlands
, 1988
), pp. 165
-171
.11.
P. A. M.
Dirac
, “Generalized hamiltonian dynamics
,” Can. J. Math.
2
, 129
-148
(1950
).12.
B. S.
DeWitt
, “Quantum theory of gravity. I. The canonical theory
,” Phys. Rev.
160
, 1113
(1967
).13.
R.
Arnowitt
, S.
Deser
, and C.
Misner
, “Dynamical structure and definition of energy in general relativity
,” Phys. Rev.
116
(5
), 1322
-1330
(1959
).14.
C.
Blohmann
, M. C.
Barbosa Fernandes
, and A.
Weinstein
, “Groupoid symmetry and constraints in general relativity
,” Commun. Contemp. Math.
15
, 1250061
(2013
).15.
A. S.
Cattaneo
and M.
Schiavina
, “BV-BFV approach to general relativity. Part II: Palatini-Holst action
” (unpublished).16.
A. S.
Cattaneo
and M.
Schiavina
, “On time
” (unpublished).17.
18.
G.
Felder
and D.
Kazhdan
with an appendix by T. M. Schlank, “The classical master equation
,” in Contemporary Mathematics
(AMS
, 2014
), Vol. 610
.19.
J.
Stasheff
, “Deformation theory and the Batalin-Vilkovisky master equation
,” inDeformation Theory and Symplectic Geometry, Proceedings, Meeting
, Ascona, Switzerland
, June 16-22, 1996
; e-print arXiv:q-alg/9702012.20.
D.
Roytenberg
, “AKSZ-BV formalism and courant algebroid-induced topological field theories
,” Lett. Math. Phys.
79
, 143
-159
(2007
).21.
F.
Schaetz
, “BFV-complex and higher homotopy structures
,” Commun. Math. Phys.
286
(2
), 399
-443
(2009
).22.
F.
Schaetz
, “Invariance of the BFV complex
,” Pac. J. Math.
248
(2
), 453
-474
(2010
).© 2016 AIP Publishing LLC.
2016
AIP Publishing LLC
You do not currently have access to this content.