Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure of quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures.

1.
Albeverio
,
S.
,
Guatteri
,
G.
, and
Mazzucchi
,
S.
, “
Phase space Feynman path integrals
,”
J. Math. Phys.
43
,
2847
2857
(
2002
).
2.
Albeverio
,
S.
,
Høegh-Krohn
,
R.
, and
Mazzucchi
,
S.
,
Mathematical Theory of Feynman Path Integrals: An Introduction
,
Lecture Notes in Mathematics
(
Springer Verlag
,
Berlin
,
2008
), Vol.
523
.
3.
Berezin
,
F. A.
, “
Non-Wiener functional integrals
,”
Theor. Math. Phys.
6
(
N2
),
141
155
(
1971
).
4.
Berezin
,
F. A.
, “
Feynman path integrals in a phase space
,”
Sov. Phys. Usp.
23
,
763
788
(
1980
).
5.
Bock
,
W.
and
Grothaus
,
M.
, “
White noise approach to phase space Feynman path integrals
,”
Theory Probab. Math. Stat.
85
,
7
21
(
2012
).
6.
Bock
,
W.
,
Grothaus
,
M.
, and
Jung
,
S.
, “
The Feynman integrand for the charged particle in a constant magnetic field as white noise distribution
,”
Commun. Stochastic Anal.
6
(
N4
),
649
668
(
2012
).
7.
Böttcher
,
B.
,
Butko
,
Ya. A.
,
Schilling
,
R. L.
, and
Smolyanov
,
O. G.
, “
Feynman formulae and path integrals for some evolutionary semigroups related to τ-quantization
,”
Russ. J. Math. Phys.
18
(
N4
),
387
399
(
2011
).
8.
Bouchaud
,
J.-P.
and
Georges
,
A.
, “
Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications
,”
Phys. Rep.
195
(
N4-5
),
127
293
(
1990
).
9.
Bouchemla
,
N.
and
Chetouani
,
L.
, “
Path integral solution for a particle with position dependent mass
,”
Acta Phys. Pol., B
40
(
N10
),
2711
2723
(
2009
).
10.
Butko
,
Ya. A.
, “
Feynman formulas and functional integrals for diffusion with drift in a domain on a manifold
,”
Math. Notes
83
,
301
316
(
2008
).
11.
Butko
,
Ya. A.
, “
Function integrals corresponding to a solution of the Cauchy-Dirichlet problem for the heat equation in a domain of a Riemannian manifold
,”
J. Math. Sci.
151
,
2629
2638
(
2008
).
12.
Butko
,
Ya.
,
Grothaus
,
M.
, and
Smolyanov
,
O. G.
, “
Feynman formula for a class of second-order parabolic equations in a bounded domain
,”
Dokl. Math.
78
,
590
595
(
2008
).
13.
Butko
,
Ya.
,
Grothaus
,
M.
, and
Smolyanov
,
O. G.
, “
Lagrangian Feynman formulae for second order parabolic equations in bounded and unbounded domains
,”
Infinite Dimens. Anal., Quantum Probab. Relat. Top.
13
,
377
392
(
2010
).
14.
Butko
,
Ya.
,
Schilling
,
R. L.
, and
Smolyanov
,
O. G.
, “
Feynman formulae for Feller semigroups
,”
Dokl. Math.
82
,
679
683
(
2010
).
15.
Butko
,
Ya. A.
,
Schilling
,
R. L.
, and
Smolyanov
,
O. G.
, “
Hamiltonian Feynman-Kac and Feynman formulae for dynamics of particles with position-dependent mass
,”
Int. J. Theor. Phys.
50
,
2009
2018
(
2011
).
16.
Butko
,
Ya. A.
,
Schilling
,
R. L.
, and
Smolyanov
,
O. G.
, “
Lagrangian and Hamiltonian Feynman formulae for some Feller semigroups and their perturbations
,”
Infinite Dimens. Anal., Quantum Probab. Relat. Top.
15
(
N3
),
1250015
(
2012
).
17.
Cartier
,
P.
and
De Witt-Morette
,
C.
,
Functional Integration: Action and Symmetries
(
Cambridge University Press
,
Cambridge
,
2006
).
18.
Chernoff
,
P.
, “
Product formulas, nonlinear semigroups and addition of unbounded operators
,”
Mem. Am. Math. Soc.
140
(
1974
).
19.
Daubechies
,
I.
and
Klauder
,
J. R.
, “
Quantum-mechanical path integrals with Wiener measure for all polynomial Hamiltonians. II
,”
J. Math. Phys.
26
,
2239
2256
(
1985
).
20.
De Witt-Morette
,
C.
,
Maheshwari
,
A.
, and
Nelson
,
B.
, “
Path integration in non-relativistic quantum mechanics
,”
Phys. Rep.
50
,
255
372
(
1979
).
21.
Elworthy
,
D.
and
Truman
,
A.
, “
Feynman maps, Cameron–Martin formulae and anharmonic oscillators
,”
Ann. Inst. Henri Poincare
41
(
N2
),
115
142
(
1984
).
22.
Feynman
,
R. P.
, “
Space-time approach to nonrelativistic quantum mechanics
,”
Rev. Mod. Phys.
20
,
367
387
(
1948
).
23.
Feynman
,
R. P.
, “
An operational calculus having application in quantum electrodynamics
,”
Phys. Rev.
84
,
108
128
(
1951
).
24.
Freidlin
,
M.
,
Functional Integration and Partial Differential Equations
(
Princeton University Press
,
Princeton, New Jersey
,
1985
).
25.
Gadella
,
M.
,
Kuru
,
Ş.
, and
Negro
,
J.
, “
Self-adjoint Hamiltonians with a mass jump: General matching conditions
,”
Phys. Lett. A
362
,
265
268
(
2007
).
26.
Gadella
,
M.
and
Smolyanov
,
O. G.
, “
Feynman formulas for particles with position-dependent mass
,”
Dokl. Math.
77
,
120
123
(
2007
).
27.
Gangulu
,
A.
,
Kuru
,
Ş.
,
Negro
,
J.
, and
Nieto
,
L. M.
, “
A study of the bound states for square potential wells with position-dependent mass
,”
Phys. Lett. A
360
,
228
233
(
2006
).
28.
Garrod
,
C.
, “
Hamiltonian path integral methods
,”
Rev. Mod. Phys.
38
,
483
494
(
1966
).
29.
Grosche
,
C.
and
Steiner
,
F.
,
Handbook of Feynman Path Integrals
(
Springer
,
1998
).
30.
Ichinose
,
W.
, “
The phase space Feynman path integral with gauge invariance and its convergence
,”
Rev. Math. Phys.
12
,
1451
1463
(
2000
).
31.
Jacob
,
N.
,
Pseudo-Differential Operators and Markov Processes
(
Imperial College Press
,
London
,
2005
), Vol.
1–3
.
32.
Johnson
,
G. W.
and
Lapidus
,
M. L.
,
The Feynman Integral and Feynman’s Operational Calculus
(
Clarendon Press
,
Oxford
,
2000
).
33.
Kitada
,
H.
and
Kumano-go
,
H.
, “
A family of Fourier integral operators and the fundamental solution for a Schrödinger equation
,”
Osaka J. Math.
18
,
291
360
(
1981
).
34.
Kleinert
,
H.
,
Path Integrals in Quantum Mechanics, Statistics and Polymer Physics
, 4th ed. (
World Scientific Publishing Co.
,
Singapore
,
2006
).
35.
Kumano-go
,
N.
, “
A Hamiltonian path integral for a degenerate parabolic pseudo-differential operators
,”
J. Math. Sci. Univ. Tokyo
3
,
57
72
(
1996
).
36.
Kumano-go
,
N.
and
Fujiwara
,
D.
, “
Phase space Feynman path integrals via piecewise bicharacteristic paths and their semiclassical approximations
,”
Bull. Sci. Math.
132
,
313
357
(
2008
).
37.
Laskin
,
N.
, “
Fractional quantum mechanics and Lévy path integrals
,”
Phys. Lett. A
268
,
298
305
(
2000
).
38.
Laskin
,
N.
, “
Lévy flights over quantum paths
,”
Commun. Nonlinear Sci. Numer. Simul.
12
,
2
18
(
2007
).
39.
Lejay
,
A.
, “
A probabilistic representation of the solution of some quasi-linear PDE with a divergence form operator. Application to existence of weak solutions of FBSDE
,”
Stochastic Processes Appl.
110
,
145
176
(
2004
).
40.
Lunardi
,
A.
, “
Analytic semigroups and optimal regularity in parabolic problems
,” in
Progress in Nonlinear Differential Equations and Their Applications
(
Birkhäuser
,
Basel, Boston, Berlin
,
1995
), Vol.
16
.
41.
Metzler
,
R.
and
Klafter
,
J.
, “
The random walk’s guide to anomalous diffusion: A fractional dynamics approach
,”
Phys. Rep.
339
,
1
77
(
2000
).
42.
Nelson
,
E.
, “
Feynman integrals and the Schrödinger equation
,”
J. Math. Phys.
3
,
332
343
(
1964
).
43.
Obrezkov
,
O. O.
, “
The proof of the Feynman-Kac formula for heat equation on a compact Riemannian manifold
,”
Infinite Dimens. Anal., Quantum Probab. Relat. Top.
6
,
311
320
(
2003
).
44.
Obrezkov
,
O.
,
Smolyanov
,
O. G.
, and
Truman
,
A.
, “
The generalized Chernoff theorem and randomized Feynman formula
,”
Dokl. Math.
71
,
105
110
(
2005
).
45.
Orlov
,
Yu. N.
,
Sakbaev
,
V. Zh.
, and
Smolyanov
,
O. G.
, “
Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian
,”
Theor. Math. Phys.
172
(
N1
),
987
1000
(
2012
).
46.
Plyashechnik
,
A. S.
, “
Feynman Formula for Schrödinger-type equations with time- and space-dependent coefficients
,”
Russ. J. Math. Phys.
19
(
N3
),
340
359
(
2012
).
47.
Plyashechnik
,
A. S.
, “
Feynman Formulas for second–order parabolic equations with variable coefficients
,”
Russ. J. Math. Phys.
20
(
N3
),
3
(
2013
).
48.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics: Functional Analysis
(
Academic Press
,
1980
), Vol.
I
.
49.
Sakbaev
,
V. G.
and
Smolyanov
,
O. G.
, “
Dynamics of a quantum particle with discontinuous position-dependent mass
,”
Dokl. Math.
82
,
630
634
(
2010
).
50.
Simon
,
B.
,
Functional Integration and Quantum Physics
(
AMS Chelsea Publishing
,
2004
).
51.
Smolyanov
,
O. G.
and
Shamarov
,
N. N.
, “
Feynman and Feynman-Kac formulae for evolution equations with Vladimirov operator
,”
Dokl. Math.
77
,
345
349
(
2008
).
52.
Smolyanov
,
O. G.
and
Shamarov
,
N. N.
, “
Hamiltonian Feynman integrals for equations with the Vladimirov operator
,”
Dokl. Math.
81
,
209
214
(
2010
).
53.
Smolyanov
,
O. G.
and
Shavgulidze
,
E. T.
,
Kontinualnye Integraly
(
Moscow State University Press
,
Moscow
,
1990
) (in Russian).
54.
Smolyanov
,
O. G.
and
Shavgulidze
,
E. T.
, “
The support of symplectic Feynman measure and uncertainty principle
,”
Dokl. Acad. Nauk USSR
323
,
1038
1042
(
1992
) (in Russian).
55.
Smolyanov
,
O. G.
,
Tokarev
,
A. G.
, and
Truman
,
A.
, “
Hamiltonian Feynman path integrals via the Chernoff formula
,”
J. Math. Phys.
43
,
5161
5171
(
2002
).
56.
Smolyanov
,
O. G.
,
Weizsäcker
,
H. v.
, and
Wittich
,
O.
, “
Brownian motion on a manifold as limit of stepwise conditioned standard Brownian motions
,” in
Stochastic Proceses, Physics and Geometry: New Interplays. II: A Volume in Honor of Sergio Albeverio
(
American Mathematical Society
,
Providence
,
2000
), pp.
589
602
.
57.
Smolyanov
,
O. G.
,
Weizsäcker
,
H. v.
, and
Wittich
,
O.
, “
Diffusion on compact Riemannian manifolds, and surface measures
,”
Dokl. Math.
61
,
230
234
(
2000
).
58.
Smolyanov
,
O. G.
,
Weizsäcker
,
H. v.
, and
Wittich
,
O.
, “
Chernoff’s theorem and the construction of semigroups
,” in
Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics, Proceedings of 7th International Conference on Evolution of Equations and Applications
,
Levico Terme, Italy
,
October/November 2000
(
Birkhäuser
,
Basel
,
2003
), pp.
349
358
.
59.
Smolyanov
,
O. G.
,
Weizsäcker
,
H. v.
, and
Wittich
,
O.
, “
Chernoff’s theorem and discrete time approximations of Brownian motion on manifolds
,”
Potential Anal.
26
,
1
29
(
2007
).
60.
Smolyanov
,
O. G.
,
Weizsäcker
,
H. v.
, and
Wittich
,
O.
, “
Surface measures and initial boundary value problems generated by diffusions with drift
,”
Dokl. Math.
76
,
606
610
(
2007
).
61.
Stannat
,
W.
, “
(Nonsymmetric) Dirichlet operators on L1: Existence, uniqueness and associated Markov processes
,”
Ann. della Scuola Normale Superiore di Pisa, Cl. Sci. 4e série
28
(
N1
),
99
140
(
1999
).
You do not currently have access to this content.