Asymptotic behavior (with respect to the number of trials) of symmetric generalizations of binomial distributions and their related entropies is studied through three examples. The first one has the q-exponential as the generating function, the second one involves the modified Abel polynomials, and the third one has Hermite polynomials. We prove analytically that the Rényi entropy is extensive for these three cases, i.e., it is proportional (asymptotically) to the number n of events and that q-exponential and Hermite cases have also extensive Boltzmann-Gibbs. The Abel case is exceptional in the sense that its Boltzmann-Gibbs entropy is not extensive and behaves asymptotically as the square root of n. This result is obtained numerically and also confirmed analytically, under reasonable assumptions, by using a regularization of the beta function and its derivative. Probabilistic urn and genetic models are presented for illustrating this remarkable case.

1.
E. M. F.
Curado
,
J. P.
Gazeau
, and
L. M. C. S.
Rodrigues
, “
On a generalization of the binomial distribution and its Poisson-like limit
,”
J. Stat. Phys.
146
,
264
-
280
(
2012
).
2.
H.
Bergeron
,
E. M. F.
Curado
,
J. P.
Gazeau
, and
L. M. C. S.
Rodrigues
, “
Generating functions for generalized binomial distributions
,”
J. Math. Phys.
53
,
103304-1
-
103304-22
(
2012
).
3.
H.
Bergeron
,
E. M. F.
Curado
,
J. P.
Gazeau
, and
L. M. C. S.
Rodrigues
, “
Generalized binomial distributions
,” in
Group 29: Physical and Mathematical Aspects of Symmetries (Proceedings of the 29th International Colloquium on Group Theoretical Methods in Physics, Tianjin, China, 25 August 2012)
, edited by
J. P.
Gazeau
,
M.
Ge
, and
C.
Bai
(
World Scientific
,
2013
), Vol.
19
, pp.
265
-
270
.
4.
H.
Bergeron
,
E. M. F.
Curado
,
J. P.
Gazeau
, and
L. M. C. S.
Rodrigues
, “
Symmetric generalized binomial distribution
,”
J. Math. Phys.
54
,
123301-1
-
123301-18
(
2013
); e-print arXiv:1308.4863v1 [math-ph].
5.
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
-
423
and 623-656 (
1948
).
6.
C. E.
Shannon
and
W.
Weaver
,
The Mathematical Theory of Communication
(
University of Illinois Press
,
Urbana
,
1949
).
7.
A.
Rényi
, “
On measures of entropy and information
,” in
Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability
(
University of California Press
,
1960
), Vol.
1
, pp.
547
-
561
.
8.
S.
Roman
,
The Umbral Calculus
,
Pure and Applied Mathematics Vol. 111
(
Academic Press, Inc. [Harcourt Brace Jovanovich Publishers]
,
London
,
1984
), reprinted by Dover, 2005, pp. 29–30 and pp. 72–75.
9.
C.
Tsallis
, “
Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years
,”
Braz. J. Phys.
39
,
337
-
356
(
2009
).
10.
N.
Johnson
,
S.
Kotz
, and
A. W.
Kempf
,
Univariate Discrete Distributions
, 2nd ed. (
John Wiley and Sons
,
1992
), p.
239
.
11.
See http://www.encyclopediaofmath.org/ for Pólya distribution–Encyclopedia of Mathematics.
12.
R.
Hanel
,
S.
Thurner
, and
C.
Tsallis
, “
Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example
,”
Eur. Phys. J. B
72
,
263
-
268
(
2009
).
13.
J. A.
Marsh
,
M. A.
Fuentes
,
L. G.
Moyano
, and
C.
Tsallis
, “
Influence of global correlations on central limit theorems and entropic extensivity
,”
Physica A
372
,
183
-
202
(
2006
).
14.
A.
Rodríguez
and
C.
Tsallis
, “
Connection between Dirichlet distributions and a scale-invariant probabilistic model based on Leibniz-like pyramids
,”
J. Stat. Mech.
2014
,
P12027
.
15.
S. R. S.
Varadhan
, “
Special invited paper: Large deviations
,”
Ann. Probab.
36
,
397
-
419
(
2008
).
16.
G.
Ruiz
and
C.
Tsallis
, “
Emergence of q-statistical functions in a generalized binomial distribution with strong correlations
,”
J. Math. Phys.
56
,
053301
-
053312
(
2015
).
17.
R. M.
Corless
,
G. H.
Gonnet
,
D. E. G.
Hare
,
D. J.
Jeffrey
, and
D. E.
Knuth
, “
On the Lambert W function
,”
Adv. Comput. Math.
5
,
329
-
359
(
1996
).
18.
W.
Magnus
,
F.
Oberhettinger
, and
R. P.
Soni
,
Formulas and Theorems for the Special Functions of Mathematical Physics
, 3rd ed. (
Springer-Verlag
,
Berlin
,
1966
).
19.
20.
H.
Bergeron
,
E. M. F.
Curado
,
J. P.
Gazeau
, and
L. M. C. S.
Rodrigues
, “
Extensivity of Rényi entropy in the Laplace-de Finetti distributions
,”
Physica A
441
,
23
-
31
(
2016
).
21.
I. S.
Gradshteyn
and
I. M.
Ryzhik
, in
Table of Integrals, Series, and Products
, 7th ed., edited by
A.
Jeffrey
and
D.
Zwillinger
(
Academic Press
,
New York
,
2007
).
22.
R.
Hanel
and
S.
Thurner
, “
When do generalized entropies apply? How phase space volume determines entropy
,”
EPL
96
,
50003
(
2011
).
23.
R.
Hanel
,
S.
Thurner
, and
M.
Gell-Mann
, “
How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
6905
-
6910
(
2014
).
24.
C.
Tsallis
, “
An introduction to nonadditive entropies and a thermostatistical approach to inanimate and living matter
,”
Contemp. Phys.
55
,
179
-
197
(
2014
).
You do not currently have access to this content.