We develop a frame and dyad gauge-independent formalism for the calculus of variations of functionals involving spinorial objects. As a part of this formalism, we define a modified variation operator which absorbs frame and spin dyad gauge terms. This formalism is applicable to both the standard spacetime (i.e., SL(2, ℂ)) 2-spinors as well as to space (i.e., SU(2, ℂ)) 2-spinors. We compute expressions for the variations of the connection and the curvature spinors.

1.
Arnowitt
,
R.
,
Deser
,
S.
, and
Misner
,
C. W.
, “
The dynamics of general relativity
,” in
Gravitation: An Introduction to Current Research
, edited by
Witten
,
L.
(
John Wiley & Witten
,
1962
), p.
227
.
2.
Bäckdahl
,
T.
, SymManipulator, 2011-2015, http://www.xact.es/SymManipulator.
3.
Bäckdahl
,
T.
and
Valiente Kroon
,
J. A.
, “
Geometric invariant measuring the deviation from Kerr data
,”
Phys. Rev. Lett.
104
,
231102
(
2010
).
4.
Bäckdahl
,
T.
and
Valiente Kroon
,
J. A.
, “
On the construction of a geometric invariant measuring the deviation from Kerr data
,”
Ann. Henri Poincare
11
,
1225
(
2010
).
5.
Bäckdahl
,
T.
and
Valiente Kroon
,
J. A.
, “
Approximate twistors and positive mass
,”
Classical Quantum Gravity
28
,
075010
(
2011
).
6.
Dain
,
S.
, “
Geometric inequalities for axially symmetric black holes
,”
Classical Quantum Gravity
29
,
73001
(
2012
).
7.
Geroch
,
R.
,
Held
,
A.
, and
Penrose
,
R.
, “
A space-time calculus based on pairs of null directions
,”
J. Math. Phys.
14
,
874
(
1973
).
8.
Mars
,
M.
, “
Present status of the Penrose inequality
,”
Classical Quantum Gravity
26
,
193001
(
2009
).
9.
Martín-García
,
J. M.
, xAct, 2002-2015, http://www.xact.es.
10.
Penrose
,
R.
and
Rindler
,
W.
,
Spinors and Space-Time: Volume 1. Two-Spinor Calculus and Relativistic Fields
(
Cambridge University Press
,
1984
).
11.

The primed indices are moved up after the Lie derivative is taken to allow the symmetrizations to be written nicely.

12.
Troutman
,
J. L.
,
Variational Calculus with Elementary Convexity
(
Springer Verlag
,
1983
).
13.
Witten
,
E.
, “
A new proof of the positive energy theorem
,”
Commun. Math. Phys.
80
,
381
(
1981
).
You do not currently have access to this content.