We develop a frame and dyad gauge-independent formalism for the calculus of variations of functionals involving spinorial objects. As a part of this formalism, we define a modified variation operator which absorbs frame and spin dyad gauge terms. This formalism is applicable to both the standard spacetime (i.e., SL(2, ℂ)) 2-spinors as well as to space (i.e., SU(2, ℂ)) 2-spinors. We compute expressions for the variations of the connection and the curvature spinors.
REFERENCES
1.
Arnowitt
, R.
, Deser
, S.
, and Misner
, C. W.
, “The dynamics of general relativity
,” in Gravitation: An Introduction to Current Research
, edited by Witten
, L.
(John Wiley & Witten
, 1962
), p. 227
.2.
Bäckdahl
, T.
, SymManipulator, 2011-2015, http://www.xact.es/SymManipulator.3.
Bäckdahl
, T.
and Valiente Kroon
, J. A.
, “Geometric invariant measuring the deviation from Kerr data
,” Phys. Rev. Lett.
104
, 231102
(2010
).4.
Bäckdahl
, T.
and Valiente Kroon
, J. A.
, “On the construction of a geometric invariant measuring the deviation from Kerr data
,” Ann. Henri Poincare
11
, 1225
(2010
).5.
Bäckdahl
, T.
and Valiente Kroon
, J. A.
, “Approximate twistors and positive mass
,” Classical Quantum Gravity
28
, 075010
(2011
).6.
Dain
, S.
, “Geometric inequalities for axially symmetric black holes
,” Classical Quantum Gravity
29
, 73001
(2012
).7.
Geroch
, R.
, Held
, A.
, and Penrose
, R.
, “A space-time calculus based on pairs of null directions
,” J. Math. Phys.
14
, 874
(1973
).8.
Mars
, M.
, “Present status of the Penrose inequality
,” Classical Quantum Gravity
26
, 193001
(2009
).9.
Martín-García
, J. M.
, xAct, 2002-2015, http://www.xact.es.10.
Penrose
, R.
and Rindler
, W.
, Spinors and Space-Time: Volume 1. Two-Spinor Calculus and Relativistic Fields
(Cambridge University Press
, 1984
).11.
The primed indices are moved up after the Lie derivative is taken to allow the symmetrizations to be written nicely.
12.
Troutman
, J. L.
, Variational Calculus with Elementary Convexity
(Springer Verlag
, 1983
).13.
Witten
, E.
, “A new proof of the positive energy theorem
,” Commun. Math. Phys.
80
, 381
(1981
).© 2016 AIP Publishing LLC.
2016
AIP Publishing LLC
You do not currently have access to this content.