We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an application we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.

1.
Aharonov
,
D.
,
Ben-Or
,
M.
,
Impagliazzo
,
R.
, and
Nisan
,
N.
, “
Limitations of noisy reversible computation
,” e-print arXiv:quant-ph/9611028 (1996).
2.
Audenaert
,
K. M. R.
, “
A note on the p → q norms of 2-positive maps
,”
Linear Algebra Appl.
430
(
4
),
1436
1440
(
2009
).
3.
Ben-Or
,
M.
,
Gottesman
,
D.
, and
Hassidim
,
A.
, “
Quantum refrigerator
,” preprint arXiv:1301.1995 (2013).
4.
Bhatia
,
R.
,
Matrix Analysis
(
Springer
,
1997
), Vol.
169
.
5.
Bobkov
,
S. G.
and
Tetali
,
P.
, “
Modified logarithmic Sobolev inequalities in discrete settings
,”
J. Theor. Probab.
19
(
2
),
289
336
(
2006
).
6.
Bodineau
,
T.
and
Zegarlinski
,
B.
, “
Hypercontractivity via spectral theory
,”
Infinite Dimens. Anal., Quantum Probab. Relat. Top.
03
(
01
),
15
31
(
2000
).
7.
Burgarth
,
D.
,
Chiribella
,
G.
,
Giovannetti
,
V.
,
Perinotti
,
P.
, and
Yuasa
,
K.
, “
Ergodic and mixing quantum channels in finite dimensions
,”
New J. Phys.
15
(
7
),
073045
(
2013
).
8.
Cubitt
,
T. S.
,
Lucia
,
A.
,
Michalakis
,
S.
, and
Perez-Garcia
,
D.
, “
Stability of local quantum dissipative systems
,”
Commun. Math. Phys.
337
(
3
),
1275
1315
(
2015
).
9.
Davis
,
C.
, “
A Schwarz inequality for convex operator functions
,”
Proc. Am. Math. Soc.
8
(
1
),
42
44
(
1957
).
10.
Diaconis
,
P.
and
Saloff-Coste
,
L.
, “
Comparison theorems for reversible Markov chains
,”
Ann. Appl. Probab.
3
(
3
),
696
730
(
1993
).
11.
Diaconis
,
P.
and
Saloff-Coste
,
L.
, “
Logarithmic Sobolev inequalities for finite Markov chains
,”
Ann. Appl. Probab.
6
(
3
),
695
750
(
1996
).
12.
Gorini
,
V.
,
Kossakowski
,
A.
, and
Sudarshan
,
E. C. George
, “
Completely positive dynamical semigroups of N-level systems
,”
J. Math. Phys.
17
,
821
825
(
1976
).
13.
Junge
,
M.
,
Palazuelos
,
C.
,
Parcet
,
J.
, and
Perrin
,
M.
, “
Hypercontractivity in finite-dimensional matrix algebras
,”
J. Math. Phys.
56
(
2
), (
2015
).
14.
Kastoryano
,
M. J.
and
Temme
,
K.
, “
Quantum logarithmic Sobolev inequalities and rapid mixing
,”
J. Math. Phys.
54
(
5
),
052202
(
2013
).
15.
King
,
C.
, “
Hypercontractivity for semigroups of unital qubit channels
,”
Commun. Math. Phys.
328
(
1
),
285
301
(
2014
).
16.
Lindblad
,
G.
, “
On the generators of quantum dynamical semigroups
,”
Commun. Math. Phys.
48
(
2
),
119
130
(
1976
).
17.
Miclo
,
L.
, “
Remarques sur l’hypercontractivité et l’évolution de l’entropie pour des chaînes de Markov finies
,” in
Séminaire de Probabilités XXXI
,
Lecture Notes in Mathematics
(
Springer Berlin Heidelberg
,
1997
), Vol.
1655
, pp.
136
167
.
18.
Müller-Hermes
,
A.
,
Reeb
,
D.
, and
Wolf
,
M. M.
, “
Quantum subdivision capacities and continuous-time quantum coding
,”
IEEE Trans. Inf. Theory
61
(
1
),
565
581
(
2015
).
19.
Müller-Hermes
,
A.
,
Stilck França
,
D.
, and
Wolf
,
M. M.
, “
Relative entropy convergence for depolarizing channels
,”
J. Math. Phys.
57
(
2
),
022202
(
2016
).
20.
Nielsen
,
M. A.
and
Chuang
,
I. L.
, “
Quantum computation and quantum information
,” in
Cambridge Series on Information and the Natural Sciences
(
Cambridge University Press
,
2000
).
21.
Olkiewicz
,
R.
and
Zegarlinski
,
B.
, “
Hypercontractivity in noncommutative Lp spaces
,”
J. Funct. Anal.
161
(
1
),
246
285
(
1999
).
22.
Paulsen
,
V.
,
Completely Bounded Maps and Operator Algebras
,
Cambridge Studies in Advanced Mathematics
(
Cambridge University Press
,
2002
).
23.
Raginsky
,
M.
, “
Entropy production rates of bistochastic strictly contractive quantum channels on a matrix algebra
,”
J. Phys. A: Math. Gen.
35
(
41
),
L585
L590
(
2002
).
24.
Sanz
,
M.
,
Perez-Garcia
,
D.
,
Wolf
,
M. M.
, and
Cirac
,
J. I.
, “
A quantum version of Wielandt’s inequality
,”
IEEE Trans. Inf. Theory
56
(
9
),
4668
4673
(
2010
).
25.
Spohn
,
H.
, “
Entropy production for quantum dynamical semigroups
,”
J. Math. Phys.
19
(
5
),
1227
1230
(
1978
).
26.
Stein
,
E. M.
and
Shakarchi
,
R.
,
Fourier Analysis: An Introduction
(
Princeton University Press
,
2011
), Vol.
1
.
27.
Streater
,
R. F.
, “
Convergence of the quantum Boltzmann map
,”
Commun. Math. Phys.
98
(
2
),
177
185
(
1985
).
28.
Temme
,
K.
,
Pastawski
,
F.
, and
Kastoryano
,
M. J.
, “
Hypercontractivity of quasi-free quantum semigroups
,”
J. Phys. A: Math. Gen.
47
(
40
) (
2014
).
29.
Umegaki
,
H.
, “
Conditional expectation in an operator algebra. IV. Entropy and information
,”
Kodai Math. Semin. Rep.
14
(
2
),
59
85
(
1962
).
30.
Watrous
,
J.
, “
Notes on super-operator norms induced by Schatten norms
,”
Quantum Inf. Comput.
5
(
1
),
58
68
(
2005
); e-print arXiv:quant-ph/0411077.
31.

Note that our definition of the 2-entropy in Definition 2.2 is half of the corresponding function in Ref. 11. This explains the difference by a factor of 2 between our results.

32.

Note that in Ref. 17 the evolution of a probability distribution is given by a left multiplication with the transition matrix P, while we work with right multiplication. This explains why the order of Q and QT is reversed.

You do not currently have access to this content.