We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.

1.
Atiyah
,
M.
, “
Topological quantum field theories
,”
Publ. Math. Inst. Hautes Etud. Sci.
68
,
175
186
(
1989
).
2.
Beigi
,
S.
,
Shor
,
P. W.
, and
Whalen
,
D.
, “
The quantum double model with boundary: Condensations and symmetries
,”
Commun. Math. Phys.
306
(
3
),
663
694
(
2011
).
3.
Bombin
,
H.
, “
Topological order with a twist: Ising anyons from an Abelian model
,”
Phys. Rev. Lett.
105
,
030403
(
2010
).
4.
Bombin
,
H.
and
Martin-Delgado
,
M. A.
, “
Topological quantum distillation
,”
Phys. Rev. Lett.
97
,
180501
(
2006
).
5.
Bombin
,
H.
and
Martin-Delgado
,
M. A.
, “
Family of non-Abelian Kitaev models on a lattice: Topological condensation and confinement
,”
Phys. Rev. B
78
,
115421
(
2008
).
6.
Bombin
,
H.
and
Martin-Delgado
,
M. A.
, “
Topological computation without braiding
,”
Phys. Rev. Lett.
98
,
160502
(
2007
).
7.
Bravyi
,
S.
,
Hastings
,
M.
, and
Verstraete
,
F.
, “
Lieb-Robinson bounds and the generation of correlations and topological quantum order
,”
Phys. Rev. Lett.
97
(
5
),
050401
(
2006
).
8.
Bravyi
,
S.
and
Kitaev
,
A. Y.
, “
Quantum codes on a lattice with boundary
,” e-print arXiv:quant-ph/9811052 (
1998
).
9.
Bravyi
,
S.
and
Kitaev
,
A. Y.
, “
Universal quantum computation with ideal Clifford gates and noisy ancillas
,”
Phys. Rev. A
71
,
022316
(
2005
).
10.
Bravyi
,
S.
and
König
,
R.
, “
Classification of topologically protected gates for local stabilizer codes
,”
Phys. Rev. Lett.
110
,
170503
(
2013
).
11.
Brell
,
C. G.
,
Burton
,
S.
,
Dauphinais
,
G.
,
Flammia
,
S. T.
, and
Poulin
,
D.
, “
Thermalization, error correction, and memory lifetime for Ising anyon systems
,”
Phys. Rev. X
4
(
3
),
031058
(
2014
).
12.
Burton
,
S.
,
Brell
,
C. G.
, and
Flammia
,
S. T.
, “
Classical simulation of quantum error correction in a Fibonacci anyon code
,” e-print arXiv:1506.03815v1 [quant-ph].
13.
Chen
,
X.
,
Gu
,
Z.-C.
, and
Wen
,
X.-G.
, “
Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order
,”
Phys. Rev. B
82
(
15
),
155138
(
2010
).
14.
Eastin
,
B.
and
Knill
,
E.
, “
Restrictions on transversal encoded quantum gate sets
,”
Phys. Rev. Lett.
102
,
110502
(
2009
).
15.
Else
,
D. V.
,
Schwarz
,
I.
,
Bartlett
,
S. D.
, and
Doherty
,
A. C.
, “
Symmetry-protected phases for measurement-based quantum computation
,”
Phys. Rev. Lett.
108
,
240505
(
2012
).
16.
Fowler
,
A. G.
,
Mariantoni
,
M.
,
Martinis
,
J. M.
, and
Cleland
,
A. N.
, “
Surface codes: Towards practical large-scale quantum computation
,”
Phys. Rev. A
86
,
032324
(
2012
).
17.
Fowler
,
A. G.
,
Stephens
,
A. M.
, and
Groszkowski
,
P.
, “
High threshold universal quantum computation on the surface code
,”
Phys. Rev. A
80
,
052312
(
2009
).
18.
Freedman
,
M.
,
Nayak
,
C.
,
Walker
,
K.
, and
Wang
,
Z.
, in
On Picture (2+1)-TQFTs
(
World Scientific
,
2008
), Chap. 2, pp.
19
106
.
19.
Freedman
,
M. H.
,
Kitaev
,
A. Y.
, and
Wang
,
Z.
, “
Simulation of topological field theories by quantum computers
,”
Commun. Math. Phys.
227
,
587
603
(
2002
).
20.
Freedman
,
M. H.
,
Kitaev
,
A.
,
Larsen
,
M. J.
, and
Wang
,
Z.
, “
Topological quantum computation
,”
Bull. Am. Math. Soc.
40
,
31
38
(
2003
).
21.
Freedman
,
M. H.
,
Larsen
,
M.
, and
Wang
,
Z.
, “
A modular functor which is universal for quantum computation
,”
Commun. Math. Phys.
227
(
3
),
605
622
(
2002
).
22.
Haah
,
J.
, “
Local stabilizer codes in three dimensions without string logical operators
,”
Phys. Rev. A
83
,
042330
(
2011
).
23.
Haah
,
J.
, “
An invariant of topologically ordered states under local unitary transformations
,” e-print arXiv:1407.2926 (
2014
).
24.
Hutter
,
A.
and
Wootton
,
J. R.
, “
Continuous error correction for Ising anyons
,” e-print arXiv:1508.04033 [quant-ph].
25.
Walker
,
K.
, On Witten’s 3-Manifold Invariants, Lecture Notes (1991), http://canyon23.net/math/1991TQFTNotes.pdf.
26.
Kitaev
,
A.
and
Preskill
,
J.
, “
Topological entanglement entropy
,”
Phys. Rev. Lett.
96
,
110404
(
2006
).
27.
Kitaev
,
A. Y.
, “
Fault-tolerant quantum computation by anyons
,”
Ann. Phys.
303
(
1
),
2
(
2003
).
28.
Kitaev
,
A. Y.
, “
Anyons in an exactly solved model and beyond
,”
Ann. Phys.
321
(
1
),
2
(
2006
).
29.
Kitaev
,
A. Y.
and
Kong
,
L.
, “
Models for gapped boundaries and domain walls
,”
Commun. Math. Phys.
313
(
2
),
351
373
(
2012
).
30.
Kong
,
L.
and
Wen
,
X.-G.
, “
Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions
,” e-print arXiv:1405.5858 (
2014
).
31.
Lane
,
S. M.
,
Categories for the Working Mathematician
,
Graduate Texts in Mathematics
(
Springer
,
New York
,
1998
).
32.
Levin
,
M. A.
and
Wen
,
X.-G.
, “
String-net condensation: A physical mechanism for topological phases
,”
Phys. Rev. B
71
,
045110
(
2005
).
33.
Levin
,
M. A.
and
Wen
,
X.-G.
, “
Detecting topological order in a ground state wave function
,”
Phys. Rev. Lett.
96
,
110405
(
2006
).
34.
Lieb
,
E. H.
and
Robinson
,
D. W.
, “
The finite group velocity of quantum spin systems
,”
Commun. Math. Phys.
28
(
3
),
251
257
(
1972
).
35.
Michnicki
,
K.
, “
3-D topological quantum memory with a power-law energy barrier
,”
Phys. Rev. Lett.
113
,
130501
(
2014
); e-print arXiv:1208.3496.
36.
Moore
,
G.
and
Seiberg
,
N.
, “
Polynomial equations for rational conformal field theories
,”
Phys. Lett. B
212
(
4
),
451
460
(
1998
).
37.
Pastawski
,
F.
and
Yoshida
,
B.
, “
Fault-tolerant logical gates in quantum error-correcting codes
,”
Phys. Rev. A
91
,
012305
(
2015
); e-print arXiv:1408.1720.
38.
Pedrocchi
,
F. L.
and
DiVincenzo
,
D. P.
, “
Majorana braiding with thermal noise
,”
Phys. Rev. Lett.
115
,
120402
(
2015
).
39.
Preskill
,
J.
, Lecture Notes on Quantum Computation (2004), available at http://www.theory.caltech.edu/people/preskill/ph229/lecture.
40.
Segal
,
G.
,
The Definition of Conformal Field Theory
,
London Mathematical Society Lecture Note Series
(
Cambridge University Press
,
2004
), Vol.
308
, preprint.
41.
Verlinde
,
E.
, “
Fusion rules and modular transformations in 2D conformal field theory
,”
Nucl. Phys. B
300
,
360
376
(
1988
).
42.
Wang
,
Z.
,
Topological Quantum Computation
,
Regional Conference Series in Mathematics
Vol.
112
(
Conference Board of the Mathematical Sciences
,
2010
).
43.
Witten
,
E.
, “
Quantum field theory and the Jones polynomial
,”
Commun. Math. Phys.
121
(
3
),
351
399
(
1989
).
44.

In the language of this paper, braiding/mapping class group elements belong to locality-preserving unitaries if the model is abelian. However, for a general non-abelian model, braiding is not locality-preserving according to our definition.

45.

In principle, we could consider unitaries/isometries (or sequences thereof) of the form U:Hphys,ΣHphys,Σ which map between different systems Hphys,Σ and Hphys,Σ. By a slight modification of the arguments here, we could then obtain restrictions on locality-preserving isomorphisms (instead of automorphisms, cf. Section III). Such a scenario was discussed in Ref. 10 in the context of stabilizer codes. Here, we restrict to the case where the systems (and associated ground spaces) are identical for simplicity, since the main conclusions are identical.

46.

As a side remark, we mention that our terminology is chosen with spin lattices in mind. However, the notion of locality-preservation can be relaxed. As will become obvious below, our results apply more generally to the set of homology-preserving automorphisms U. The latter can be defined as follows: if the support of an operator X is contained in a region RΣ which deformation retracts to a closed curve C, then the support of UXU must be contained in a region RΣ which deformation retracts to a curve C′ in the same homology class as C. For example, for a translation-invariant system, translating by a possibly extensive amount realizes such a homology-preserving (but not locality-preserving) automorphism.

47.

More precisely, for B(xk−1, xk+1), the relevant matrices are F̃x,x=Fxk+1zxzxk1xk and R̃ is diagonal with entries R̃x,x=Rxzz. Here, F is the F-matrix associated with basis changes on the four-punctured sphere (see Section V A), whereas Rzxy determines an isomorphism between certain Hilbert spaces associated with the three-punctured sphere. We refer to, e.g., Ref. 39 (p. 48) for a derivation of these expressions.

You do not currently have access to this content.