We analyze spectral properties of a leaky wire model with a potential bias. It describes a two-dimensional quantum particle exposed to a potential consisting of two parts. One is an attractive δ-interaction supported by a non-straight, piecewise smooth curve L dividing the plane into two regions of which one, the “interior,” is convex. The other interaction component is a constant positive potential V0 in one of the regions. We show that in the critical case, V0 = α2, the discrete spectrum is non-void if and only if the bias is supported in the interior. We also analyze the non-critical situations, in particular, we show that in the subcritical case, V0 < α2, the system may have any finite number of bound states provided the angle between the asymptotes of L is small enough.

1.
P.
Exner
and
P.
Šeba
, “
Bound states in curved quantum waveguides
,”
J. Math. Phys.
30
,
2574
-
2580
(
1989
).
2.
J.
Goldstone
and
R. L.
Jaffe
, “
Bound states in twisting tubes
,”
Phys. Rev. B
45
,
14100
-
14107
(
1992
).
3.
P.
Duclos
and
P.
Exner
, “
Curvature-induced bound states in quantum waveguides in two and three dimensions
,”
Rev. Math. Phys.
7
,
73
-
102
(
1995
).
4.
W.
Renger
and
W.
Bulla
, “
Existence of bound states in quantum waveguides under weak conditions
,”
Lett. Math. Phys.
35
,
1
-
12
(
1995
).
5.
J.
Hersch
, “
Erweiterte Symmetrieeigenschaften von Lösungen gewisser linearer Rand- und Eigenwertprobleme
,”
J. Reine Angew. Math.
218
,
143
-
158
(
1965
).
6.
G.
Bouchitté
,
M. L.
Mascarenhas
, and
L.
Trabucho
, “
Thin waveguides with Robin boundary conditions
,”
J. Math. Phys.
53
,
123517
(
2012
).
7.
J. P.
Carini
,
J. T.
Londergan
,
K.
Mullen
, and
D. P.
Murdock
, “
Bound states and resonances in quantum wires
,”
Phys. Rev. B
46
,
15538
-
15541
(
1992
).
8.
D. V.
Evans
,
D. M.
Levitin
, and
D.
Vassiliev
, “
Existence theorem for trapped modes
,”
J. Fluid Mech.
261
,
21
-
31
(
1994
).
9.
P.
Exner
, “
Leaky quantum graphs: A review
,” in
Analysis on Graphs and its Applications
,
Proceedings of Symposia in Pure Mathematics
Vol.
77
, edited by
P.
Exner
,
J. P.
Keating
,
P.
Kuchment
,
T.
Sunada
, and
A.
Teplayaev
(
American Mathematical Society
,
Providence, RI
,
2008
), pp.
523
-
564
.
10.
G.
Berkolaiko
and
P.
Kuchment
,
Introduction to Quantum Graphs
(
American Mathematical Society
,
Providence, RI
,
2013
).
11.
P.
Exner
and
T.
Ichinose
, “
Geometrically induced spectrum in curved leaky wires
,”
J. Phys. A: Math. Gen.
34
,
1439
-
1450
(
2001
).
12.
J.
Dittrich
and
J.
Kříž
, “
Curved planar quantum wires with Dirichlet and Neumann boundary conditions
,”
J. Phys. A: Math. Gen.
35
,
L269
-
L275
(
2002
).
13.
P.
Exner
and
A.
Minakov
, “
Curvature-induced bound states in Robin waveguides and their asymptotical properties
,”
J. Math. Phys.
55
,
122101
(
2014
).
14.
S.
Albeverio
,
F.
Gesztesy
,
R.
Høegh-Krohn
, and
H.
Holden
,
Solvable Models in Quantum Mechanics
, 2nd ed. (
AMS Chelsea Publishing
,
Providence, RI
,
2005
).
15.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics, IV. Analysis of Operators
(
Academic Press
,
New York
,
1978
).
16.
P.
Exner
and
K.
Němcová
, “
Leaky quantum graphs: Approximations by point interaction Hamiltonian
,”
J. Phys. A: Math. Gen.
36
,
10173
-
10193
(
2003
).
17.
G.
Zhislin
, “
A study of the spectrum of the Schrödinger operator for a system of several particles
,”
Trudy Mosk. Mat. Obšč.
9
,
81
-
120
(
1960
).
18.
G.
Zhislin
, “
Finiteness of the discrete spectrum in the quantum problem of n particles
,”
Teor. Mat. Fiz.
21
,
60
-
73
(
1974
).
You do not currently have access to this content.