An algorithmic method to exploit a general class of infinitesimal symmetries for reducing stochastic differential equations is presented, and a natural definition of reconstruction, inspired by the classical reconstruction by quadratures, is proposed. As a side result, the well-known solution formula for linear one-dimensional stochastic differential equations is obtained within this symmetry approach. The complete procedure is applied to several examples with both theoretical and applied relevance.

1.
A.
Antonov
and
M.
Spector
, “
Advanced analytics for the SABR model
,” Available at SSRN 2026350 (
2012
).
2.
A.
Arnaudon
,
A. L.
Castro
, and
D. D.
Holm
, “
Noise and dissipation on coadjoint orbits
,” preprint arXiv:1601.02249 (
2016
).
3.
M.
Arnaudon
,
X.
Chen
, and
A. B.
Cruzeiro
, “
Stochastic Euler-Poincaré reduction
,”
J. Math. Phys.
55
(
8
),
081507
(
2014
).
4.
F.
Avram
,
N. N.
Leonenko
, and
N.
Šuvak
, “
On spectral analysis of heavy-tailed Kolmogorov-Pearson diffusions
,”
Markov Process. Related Fields
19
(
2
),
249
298
(
2013
), http://math-prf.org/journal/articles/id1297/.
5.
M.
Barczy
,
L.
Döring
,
Z.
Li
, and
G.
Pap
, “
On parameter estimation for critical affine processes
,”
Electron. J. Stat.
7
,
647
696
(
2013
).
6.
D.
Belomestny
and
M.
Reiß
, “
Spectral calibration of exponential Lévy models
,”
Finance Stoch.
10
(
4
),
449
474
(
2006
).
7.
J.-M.
Bismut
,
Mécanique Aléatoire
,
Lecture Notes in Mathematics
Vol.
866
(
Springer-Verlag
,
Berlin-New York
,
1981
).
8.
L.
Borland
, “
A theory of non-Gaussian option pricing
,”
Quant. Finance
2
(
6
),
415
431
(
2002
).
9.
G.
Bormetti
and
S.
Cazzaniga
, “
Multiplicative noise, fast convolution and pricing
,”
Quant. Finance
14
(
3
),
481
494
(
2014
).
10.
F.
Cordoni
and
L.
Di Persio
, “
Lie symmetry approach to the CEV model
,”
Int. J. Differ. Equations Appl.
13
(
3
),
109
127
(
2014
).
11.
M.
Craddock
, “
Fourier type transforms on Lie symmetry groups
,”
J. Math. Phys.
56
(
9
),
091501
(
2015
).
12.
M.
Craddock
and
K. A.
Lennox
, “
Lie symmetry methods for multi-dimensional parabolic PDEs and diffusions
,”
J. Differ. Equations
252
(
1
),
56
90
(
2012
).
13.
C.
Cuchiero
,
M.
Keller-Ressel
, and
J.
Teichmann
, “
Polynomial processes and their applications to mathematical finance
,”
Finance Stoch.
16
(
4
),
711
740
(
2012
).
14.
F. C.
De Vecchi
,
P.
Morando
, and
S.
Ugolini
, “
Symmetries of stochastic differential equations: A geometric approach
,”
J. Math. Phys.
57
(
6
)
063504
(
2016
).
15.
D.
Duffie
,
D.
Filipović
, and
W.
Schachermayer
, “
Affine processes and applications in finance
,”
Ann. Appl. Probab.
13
(
3
),
984
1053
(
2003
).
16.
J. L.
Forman
and
M.
Sørensen
, “
The Pearson diffusions: A class of statistically tractable diffusion processes
,”
Scand. J. Stat.
35
(
3
),
438
465
(
2008
).
17.
R.
Friedrich
and
J.
Peinke
, “
Description of a turbulent cascade by a Fokker-Planck equation
,”
Phys. Rev. Lett.
78
(
5
),
863
(
1997
).
18.
G.
Gaeta
and
N. R.
Quintero
, “
Lie-point symmetries and stochastic differential equations
,”
J. Phys. A
32
(
48
),
8485
8505
(
1999
).
19.
T. C.
Gard
,
Introduction to Stochastic Differential Equations
,
Monographs and Textbooks in Pure and Applied Mathematics
Vol.
114
(
Marcel Dekker, Inc.
,
New York
,
1988
).
20.
F.
Ghasemi
,
M.
Sahimi
,
J.
Peinke
, and
M. Reza Rahimi
Tabar
, “
Analysis of non-stationary data for heart-rate fluctuations in terms of drift and diffusion coefficients
,”
J. Biol. Phys.
32
(
2
),
117
128
(
2006
).
21.
P.
Hagan
,
A.
Lesniewski
, and
D.
Woodward
, “
Probability distribution in the SABR model of stochastic volatility
,” in
Large Deviations and Asymptotic Methods in Finance
,
Springer Proceedings in Mathematics and Statistics
Vol.
110
(
Springer
,
Cham
,
2015
), pp.
1
35
.
22.
P. S.
Hagan
,
D.
Kumar
,
A. S.
Lesniewski
, and
D. E.
Woodward
, “
Managing smile risk
,” in
The Best of Wilmott
(
John Wiley & Sons
,
2002
), p.
249
.
23.
S. L.
Heston
, “
A closed-form solution for options with stochastic volatility with applications to bond and currency options
,”
Rev. Financ. Stud.
6
(
2
),
327
343
(
1993
).
24.
S.
Hochgerner
and
T. S.
Ratiu
, “
Geometry of non-holonomic diffusion
,”
J. Eur. Math. Soc.
17
(
2
),
273
319
(
2015
).
25.
D. D.
Holm
, “
Variational principles for stochastic fluid dynamics
,” in
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
(
The Royal Society
,
2015
), Vol.
471
, p.
20140963
.
26.
R.
Kozlov
, “
Symmetries of systems of stochastic differential equations with diffusion matrices of full rank
,”
J. Phys. A
43
(
24
),
245201
(
2010
).
27.
J.-A.
Lázaro-Camí
and
J.-P.
Ortega
, “
Stochastic Hamiltonian dynamical systems
,”
Rep. Math. Phys.
61
(
1
),
65
122
(
2008
).
28.
J.-A.
Lázaro-Camí
and
J.-P.
Ortega
, “
Reduction, reconstruction, and skew-product decomposition of symmetric stochastic differential equations
,”
Stoch. Dyn.
9
(
1
),
1
46
(
2009
).
29.
J.-A.
Lázaro-Camí
and
J.-P.
Ortega
, “
Superposition rules and stochastic Lie-Scheffers systems
,”
Ann. Inst. Henri Poincaré Probab. Stat.
45
(
4
),
910
931
(
2009
).
30.
P.
Lescot
and
J.-C.
Zambrini
, “
Probabilistic deformation of contact geometry, diffusion processes and their quadratures
,” in
Seminar on Stochastic Analysis, Random Fields and Applications V
,
Progress in Probability
Vol.
59
(
Birkhäuser
,
Basel
,
2008
), pp.
203
226
.
31.
X.-M.
Li
, “
An averaging principle for a completely integrable stochastic Hamiltonian system
,”
Nonlinearity
21
(
4
),
803
822
(
2008
).
32.
M.
Lorig
,
S.
Pagliarani
, and
A.
Pascucci
, “
A family of density expansions for Lévy-type processes
,”
Ann. Appl. Probab.
25
(
1
),
235
267
(
2015
).
33.
S. J. A.
Malham
and
A.
Wiese
, “
Stochastic Lie group integrators
,”
SIAM J. Sci. Comput.
30
(
2
),
597
617
(
2008
).
34.
U.
Marini Bettolo Marconi
,
A.
Puglisi
,
L.
Rondoni
, and
A.
Vulpiani
, “
Fluctuation–dissipation: Response theory in statistical physics
,”
Phys. Rep.
461
(
4
),
111
195
(
2008
).
35.
S. V.
Meleshko
,
Y. N.
Grigoriev
,
N. K.
Ibragimov
, and
V. F.
Kovalev
,
Symmetries of Integro-differential Equations: With Applications in Mechanics and Plasma Physics
(
Springer Science & Business Media
,
2010
), Vol.
806
.
36.
I.
Moerdijk
and
J.
Mrčun
,
Introduction to Foliations and Lie Groupoids
,
Cambridge Studies in Advanced Mathematics
Vol.
91
(
Cambridge University Press
,
Cambridge
,
2003
).
37.
P. J.
Olver
,
Applications of Lie Groups to Differential Equations
, 2nd ed.
Graduate Texts in Mathematics
Vol.
107
(
Springer-Verlag
,
New York
,
1993
).
38.
E.
Platen
and
N.
Bruti-Liberati
,
Numerical Solution of Stochastic Differential Equations with Jumps in Finance
,
Stochastic Modelling and Applied Probability
Vol.
64
(
Springer-Verlag
,
Berlin
,
2010
).
39.
N.
Privault
and
J.-C.
Zambrini
, “
Stochastic deformation of integrable dynamical systems and random time symmetry
,”
J. Math. Phys.
51
(
8
),
082104
(
2010
).
40.
U.
Seifert
, “
Stochastic thermodynamics, fluctuation theorems and molecular machines
,”
Rep. Progr. Phys.
75
(
12
),
126001
(
2012
).
41.
W. T.
Shaw
and
M.
Schofield
, “
A model of returns for the post-credit-crunch reality: Hybrid brownian motion with price feedback
,”
Quant. Finance
15
(
6
),
975
998
(
2015
).
42.
H.
Stephani
,
Differential Equations: Their Solution Using Symmetries
(
Cambridge University Press
,
Cambridge
,
1989
).
43.
È. B.
Vinberg
,
Lie groups and Lie algebras, III
,
Encyclopaedia of Mathematical Sciences
Vol.
41
(
Springer-Verlag
,
Berlin
,
1994
).
44.
G.
Wilk
and
Z.
Włodarczyk
, “
Interpretation of the nonextensivity parameter q in some applications of tsallis statistics and Lévy distributions
,”
Phys. Rev. Lett.
84
(
13
),
2770
(
2000
).
45.
N. T.
Zung
and
N. T.
Thien
, “
Reduction and integrability of stochastic dynamical systems
,” preprint arXiv:1410.5492 (
2014)
.
You do not currently have access to this content.