We show how to view the equations for a cohomogeneity one Ricci soliton as a Hamiltonian system with a constraint. We investigate conserved quantities and superpotentials and use this to find some explicit formulae for Ricci solitons not of Kähler type in five dimensions.
REFERENCES
1.
Alexakis
, S.
, Chen
, D. Z.
, and Fournodvalos
, G.
, “Singular Ricci solitons and their stability under the Ricci flow
,” Comm. Partial Diff. Eqs.
40
(12
), 2123
–2172
(2015
).2.
Bernstein
, J.
and Mettler
, T.
, “Two-dimensional gradient Ricci solitons revisited
,” Int. Math. Res. Not. IMRN
2015
(1
), 78
–98
.3.
Betancourt de la Parra
, A.
, “Painlevé analysis of the Bryant soliton
,” e-print arXiv:1310.7254 (math.DG).4.
Buzano
, M.
, Dancer
, A. S.
, Gallaugher
, M.
, and Wang
, M.
, “A family of steady Ricci solitons and Ricci-flat metrics
,” Comm. Anal. Geom.
23
(3
), 611
–638
(2015
).5.
Chow
, B.
, Chu
, S. C.
, Glickenstein
, D.
, Guenther
, C.
, Isenberg
, J.
, Ivey
, T.
, Knopf
, D.
, Lu
, P.
, Luo
, F.
, and Ni
, L.
, “The Ricci flow: Techniques and applications, I: Geometric aspects
,” in Mathematical Surveys and Monographs
(American Mathematical Society
, 2007
), Vol. 135
.6.
Dancer
, A.
, Hall
, S.
, and Wang
, M.
, “Cohomogeneity one shrinking Ricci solitons: An analytic and numerical study
,” Asian J. Math.
17
(1
), 33
–61
(2013
).7.
Dancer
, A.
and Wang
, M.
, “The cohomogeneity one Einstein equations from the Hamiltonian viewpoint
,” J. Reine Angew. Math.
524
, 97
–128
(2000
).8.
Dancer
, A.
and Wang
, M.
, “Superpotentials for the cohomogeneity one Einstein equations
,” Commun. Math. Phys.
260
, 75
–115
(2005
).9.
Dancer
, A.
and Wang
, M.
, “Classification of superpotentials
,” Comm. Math. Phys.
284
, 583
–647
(2008
).10.
Dancer
, A.
and Wang
, M.
, “New examples of non-Kähler Ricci solitons
,” Math. Res. Lett.
16
, 349
–363
(2009
).11.
Dancer
, A.
and Wang
, M.
, “Non-Kähler expanding Ricci solitons
,” Int. Math. Res. Not.
2009
(6
), 1107
–1133
.12.
Dancer
, A.
and Wang
, M.
, “On Ricci solitons of cohomogeneity one
,” Ann. Global Anal. Geom.
39
, 259
–292
(2011
).13.
Dancer
, A.
and Wang
, M.
, “Classifying superpotentials: Three summands case
,” J. Geom. Phys.
61
, 675
–692
(2011
).14.
Goriely
, A.
, “Integrability and nonintegrability of dynamical systems
,” in Advanced Series in Nonlinear Dynamics
(World Scientific
, 2001
), Vol. 19
.15.
Hamilton
, R. S.
, “The formation of singularities in the Ricci flow
,” Surv. Differ. Geom.
2
, 7
–136
(1995
).16.
Ivey
, T.
, “New examples of complete Ricci solitons
,” Proc. AMS
122
, 241
–245
(1994
).17.
Perelman
, G.
, “The entropy formula for the Ricci flow and its geometric applications
,” e-print arXiv:math.DG/0211159.18.
Prelle
, M. J.
and Singer
, M. F.
, “Elementary first integrals of differential equations
,” Trans. Am. Math. Soc.
279
, 215
–229
(1983
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.