An extended Bloch representation of quantum mechanics was recently derived to offer a possible (hidden-measurements) solution to the measurement problem. In this article we use this representation to investigate the geometry of superposition and entangled states, explaining interference effects and entanglement correlations in terms of the different orientations a state-vector can take within the generalized Bloch sphere. We also introduce a tensorial determination of the generators of SU(N), which we show to be particularly suitable for the description of multipartite systems, from the viewpoint of the sub-entities. We then use it to show that non-product states admit a general description where sub-entities can remain in well-defined states, even when entangled. This means that the completed version of quantum mechanics provided by the extended Bloch representation, where density operators are also considered to be representative of genuine states (providing a complete description), not only offers a plausible solution to the measurement problem but also to the lesser-known entanglement problem. This is because we no longer need to give up the general physical principle saying that a composite entity exists and therefore is in a well-defined state, if and only if its components also exist and therefore are also in well-defined states.

1.
H.
Poincaré
,
Théorie Mathematique de la Lumière
(
Gauthiers-Villars
,
Paris
,
1892
), Vol.
2
.
2.
F.
Bloch
, “
Nuclear induction
,”
Phys. Rev.
70
,
460
474
(
1946
).
3.
D.
Aerts
, “
A possible explanation for the probabilities of quantum mechanics
,”
J. Math. Phys.
27
,
202
210
(
1986
).
4.
D.
Aerts
, “
The origin of the non-classical character of the quantum probability model
,” in
Information, Complexity, and Control in Quantum Physics
, edited by
A.
Blanquiere
, et al
(
Springer-Verlag
,
Berlin
,
1987
).
5.
D.
Aerts
and
M.
Sassoli de Bianchi
, “
The extended Bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem
,”
Ann. Phys.
351
,
975
1025
(
2014
).
6.
D.
Aerts
, “
The entity and modern physics: The creation-discovery view of reality
,” in
Interpreting Bodies: Classical and Quantum Objects in Modern Physics
, edited by
E.
Castellani
(
Princeton Unversity Press
,
Princeton
,
1998
).
7.
D.
Aerts
, “
The stuff the world is made of: Physics and reality
,” in
The White Book of “Einstein Meets Magritte,
” edited by
D.
Aerts
,
J.
Broekaert
, and
E.
Mathijs
(
Kluwer Academic Publishers
,
Dordrecht
,
1999
), pp. 129–183, 274.
8.
A. M.
Gleason
, “
Measures on the closed subspaces of a Hilbert space
,”
J. Math. Mech.
6
,
885
893
(
1957
).
9.
S.
Kochen
and
E. P.
Specker
, “
The problem of hidden variables in quantum mechanics
,”
J. Math. Mech.
17
,
59
87
(
1967
).
10.
D.
Aerts
,
B.
Coecke
,
B. D.
Hooghe
, and
F.
Valckenborgh
, “
A mechanistic macroscopic physical entity with a three-dimensional Hilbert space description
,”
Helv. Phys. Acta
70
,
793
(
1997
).
11.
B.
Coecke
, “
Hidden measurement representation for quantum entities described by finite dimensional complex Hilbert spaces
,”
Found. Phys.
25
,
1185
(
1995
).
12.
B.
Coecke
, “
Generalization of the proof on the existence of hidden measurements to experiments with an infinite set of outcomes
,”
Found. Phys. Lett.
8
,
437
(
1995
).
13.
F. T.
Hioe
and
J. H.
Eberly
, “
N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics
,”
Phys. Rev. Lett.
47
,
838
841
(
1981
).
14.
Arvind
,
K. S.
Mallesh
, and
N.
Mukunda
, “
A generalized Pancharatnam geometric phase formula for three-level quantum systems
,”
J. Phys. A: Math. Gen.
30
,
2417
(
1997
).
15.
G.
Kimura
, “
The Bloch vector for N-level systems
,”
Phys. Lett. A
314
,
339
(
2003
).
16.
M. S.
Byrd
and
N.
Khaneja
, “
Characterization of the positivity of the density matrix in terms of the coherence vector representation
,”
Phys. Rev. A
68
,
062322
(
2003
).
17.
G.
Kimura
and
A.
Kossakowski
, “
The Bloch-vector space for N-level systems—The spherical-coordinate point of view
,”
Open Syst. Inf. Dyn.
12
,
207
(
2005
).
18.
I.
Bengtsson
and
K.
Zyczkowski
,
Geometry of Quantum States: An Introduction to Quantum Entanglement
(
Cambridge University Press
,
Cambridge
,
2006
).
19.
I.
Bengtsson
and
K.
Życzkowski
, “
Geometry of the set of mixed quantum states: An apophatic approach
,” in
Geometric Methods in Physics, XXX Workshop 2011, Trends in Mathematics
(
Springer
,
2013
), pp.
175
197
.
20.
D.
Aerts
and
M.
Sassoli de Bianchi
, “
Many-measurements or many-worlds? A dialogue
,”
Found. Sci.
20
,
399
427
(
2015
).
21.
D.
Aerts
and
M.
Sassoli de Bianchi
, “
Do spins have directions?
,”
Soft Comput.
published online, (
2015
).
22.
R.
Horodecki
,
P.
Horodecki
, and
M.
Horodecki
, “
Violating Bell inequality by mixed spin-12 states: Necessary and sufficient condition
,”
Phys. Lett. A
200
,
340
344
(
1995
).
23.
J.
Schlienz
and
G.
Mahler
, “
Description of entanglement
,”
Phys. Rev. A
52
,
4396
(
1995
).
24.
R.
Horodecki
and
M.
Horodecki
, “
Information-theoretic aspects of inseparability of mixed states
,”
Phys. Rev. A
54
,
1838
(
1996
).
25.
N.
Linden
,
S.
Popescu
, and
A.
Sudbery
, “
Nonlocal parameters for multiparticle density matrices
,”
Phys. Rev. Lett.
83
,
243
(
1999
).
26.
M.
Kus
and
K.
Zyczkowski
, “
Geometry of entangled states
,”
Phys. Rev. A
63
,
1
(
2001
).
27.
Y.
Makhlin
, “
Nonlocal properties of two-qubit gates and mixed states and the optimization of quantum computations
,”
Quantum Inf. Process.
1
(
4
),
243
252
(
2002
).
28.
J.
Barrett
, “
Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality
,”
Phys. Rev. A
65
,
042302
(
2002
).
29.
A. F.
Abouraddy
,
A. V.
Sergienko
,
B. E. A.
Saleh
, and
M. C.
Teich
, “
Quantum entanglement and the two-photon Stokes parameters
,”
Opt. Commun.
201
,
93
(
2002
).
30.
C.
Spengler
,
M.
Huber
, and
B. C.
Hiesmayr
, “
A geometric comparison of entanglement and quantum nonlocality in discrete systems
,”
J. Phys. A. Math. Gen.
44
,
065304
(
2011
).
31.
S.
Jevtic
,
M.
Pusey
,
D.
Jennings
, and
T.
Rudolph
, “
Quantum steering ellipsoids
,”
Phys. Rev. Lett.
113
,
1
(
2014
).
32.
A.
Milne
,
S.
Jevtic
,
D.
Jennings
,
H.
Wiseman
, and
T.
Rudolph
, “
Quantum steering ellipsoids, extremal physical states and monogamy
,”
New J. Phys.
16
,
083017
(
2014
).
33.
O.
Gamel
, “
Entangled Bloch spheres: Bloch matrix and two-qubit state space
,”
Phys. Rev. A
93
,
062320
(
2016
).
34.
L. P.
Hughston
,
R.
Jozsa
, and
William K.
Wootters
, “
A complete classification of quantum ensembles having a given density matrix
,”
Phys. Lett. A
183
,
14
18
(
1993
).
35.
R.
Alicki
and
K.
Lendi
,
Quantum Dynamical Semigroups and Application
,
Lecture Notes in Physics
Vol.
286
(
Springer-Verlag
,
Berlin
,
1987
).
36.
G.
Mahler
and
V. A.
Weberruss
,
Quantum Networks
(
Springer
,
Berlin
,
1995
).
37.
B. S.
Cirel’son
, “
Quantum generalizations of BI
,”
Lett. Math. Phys.
4
,
93
(
1980
).
38.
R. F.
Werner
, “
Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model
,”
Phys. Rev. A
40
,
4277
4281
(
1989
).
39.
H.
Ollivier
and
W. H.
Zurek
, “
Quantum discord: A measure of the quantumness of correlations
,”
Phys. Rev. Lett.
88
,
017901
(
2001
).
40.
L.
Henderson
and
V.
Vedral
, “
Classical, quantum and total correlations
,”
J. Phys. A: Math. Gen.
34
,
6899
(
2001
).
41.
D.
Aerts
, “
A mechanistic classical laboratory situation violating the Bell inequalities with 2 2 , exactly ‘in the same way’ as its violations by the EPR experiments
,”
Helv. Phys. Acta
64
,
1
23
(
1991
).
42.
D.
Aerts
, “
The missing element of reality in the description of quantum mechanics of the EPR paradox situation
,”
Helv. Phys. Acta
57
,
421
428
(
1984
).
43.
D.
Aerts
,
S.
Aerts
,
J.
Broekaert
, and
L.
Gabora
, “
The violation of Bell inequalities in the macroworld
,”
Found. Phys.
30
,
1387
1414
(
2000
).
44.
M.
Sassoli de Bianchi
, “
Using simple elastic bands to explain quantum mechanics: A conceptual review of two of Aerts’ machine-models
,”
Cent. Eur. J. Phys.
11
,
147
161
(
2013
).
45.
M.
Sassoli de Bianchi
, “
Quantum dice
,”
Ann. Phys.
336
,
56
75
(
2013
).
46.
M.
Sassoli de Bianchi
, “
A remark on the role of indeterminism and non-locality in the violation of Bell’s inequality
,”
Ann. Phys.
342
,
133
142
(
2014
).
47.
B.
d’Espagnat
,
Conceptual Foundations of Quantum Mechanics
, 2nd ed. (
Addison-Wesley, Reading Mass
,
1976
).
48.
G. P.
Beretta
, “
The Hatsopoulos-Gyftopoulos resolution of the Schroedinger-Park paradox about the concept of state in quantum statistical mechanics
,”
Mod. Phys. Lett. A
21
,
2799
2811
(
2006
).
49.
D.
Aerts
, “
The description of joint quantum entities and the formulation of a paradox
,”
Int. J. Theor. Phys.
39
,
485
496
(
2000
).
50.
E.
Schrödinger
,
Naturwissenschaftern
23
,
807
(
1935
)
[Translated by
J. D.
Trimmer
,
Proc. Am. Philos. Soc.
124
,
323
(
1980
) (in English).];
Reprinted in
Quantum Theory and Measurement
, edited by
J. A.
Wheeler
and
W. H.
Zurek
(
Princeton University Press
,
Princeton
,
1983
), p.
152
.
51.
B. C.
Van Fraassen
,
Quantum Mechanics: An Empiricist View
(
Oxford University Press
,
Oxford, New York, Toronto
,
1991
).
52.
D.
Aerts
, “
Description of many physical entities without the paradoxes encountered in quantum mechanics
,”
Found. Phys.
12
,
1131
1170
(
1982
).
53.
B.
Coecke
, “
Representation for pure and mixed states of quantum physics in Euclidean space
,”
Int. J. Theor. Phys.
34
,
1165
(
1995
).
54.
B.
Coecke
, “
Representation of a spin-1 entity as a joint system of two spin-1/2 entities on which we introduce correlations of the second kind
,”
Helv. Phys. Acta
68
,
396
(
1995
).
55.
B.
Coecke
, “
Superposition states through correlations of the second kind
,”
Int. J. Theor. Phys.
35
,
1217
(
1996
).
You do not currently have access to this content.