We consider the 3-body problem of celestial mechanics in Euclidean, elliptic, and hyperbolic spaces and study how the Lagrangian (equilateral) relative equilibria bifurcate when the Gaussian curvature varies. We thus prove the existence of new classes of orbits. In particular, we find some families of isosceles triangles, which occur in elliptic space.

1.
Bertrand
,
J.
, “
Théorème relatif au mouvement d’un point attiré vers un center fixe
,”
C. R. Acad. Sci.
77
,
849
853
(
1873
).
2.
Bolyai
,
W.
and
Bolyai
,
J.
,
Geometrische Untersuchungen
(
Hrsg. P. Stäckel, Teubner
,
Leipzig-Berlin
,
1913
).
3.
Diacu
,
F.
, “
On the singularities of the curved N-body problem
,”
Trans. Am. Math. Soc.
363
(
4
),
2249
2264
(
2011
).
4.
Diacu
,
F.
, “
Polygonal homographic orbits of the curved 3-body problem
,”
Trans. Am. Math. Soc.
364
,
2783
2802
(
2012
).
5.
Diacu
,
F.
, “
Relative equilibria of the curved N-body problem
,”
Atlantis Studies in Dynamical Systems
Vol.
1
(
Atlantis Press
,
Amsterdam
,
2012
).
6.
Diacu
,
F.
, “
Relative equilibria of the 3-dimensional curved n-body problem
,”
Mem. Am. Math. Soc.
228
,
1071
(
2013
).
7.
Diacu
,
F.
, “
The curved N-body problem: Risks and rewards
,”
Math. Intell.
35
(
3
),
24
33
(
2013
).
8.
Diacu
,
F.
, “
The classical N-body problem in the context of curved space
,”
Canad. J. Math
(to appear); e-print arXiv:1405.0453.
9.
Diacu
,
F.
and
Kordlou
,
S.
, “
Rotopulsators of the curved N-body problem
,”
J. Differ. Equations
255
,
2709
2750
(
2013
).
10.
Diacu
,
F.
,
Martínez
,
R.
,
Pérez-Chavela
,
E.
, and
Simó
,
C.
, “
On the stability of tetrahedral relative equilibria in the positively curved 4-body problem
,”
Physica D
256-7
,
21
35
(
2013
).
11.
Diacu
,
F.
and
Pérez-Chavela
,
E.
, “
Homographic solutions of the curved 3-body problem
,”
J. Differ. Equations
250
,
340
366
(
2011
).
12.
Diacu
,
F.
,
Pérez-Chavela
,
E.
, and
Santoprete
,
M.
, “
Saari’s conjecture for the collinear N-body problem
,”
Trans. Am. Math. Soc.
357
(
10
),
4215
4223
(
2005
).
13.
Diacu
,
F.
,
Pérez-Chavela
,
E.
, and
Santoprete
,
M.
, “
The N-body problem in spaces of constant curvature. Part I: Relative equilibria
,”
J. Nonlinear Sci.
22
(
2
),
247
266
(
2012
).
14.
Diacu
,
F.
,
Pérez-Chavela
,
E.
, and
Santoprete
,
M.
, “
The N-body problem in spaces of constant curvature. Part II: Singularities
,”
J. Nonlinear Sci.
22
(
2
),
267
275
(
2012
).
15.
Diacu
,
F.
,
Pérez-Chavela
,
E.
, and
Guadalupe Reyes Victoria
,
J.
, “
An intrinsic approach in the curved N-body problem. The negative curvature case
,”
J. Differ. Equations
252
,
4529
4562
(
2012
).
16.
Diacu
,
F.
and
Popa
,
S.
, “
All Lagrangian relative equilibria have equal masses
,”
J. Math. Phys.
55
,
112701
(
2014
).
17.
Diacu
,
F.
and
Thorn
,
B.
, “
Rectangular orbits of the curved 4-body problem
,”
Proc. Am. Math. Soc.
143
,
1583
1593
(
2015
).
18.
Euler
,
L.
, “
Considerationes de motu corporum coelestium
,”
Novi commentarii academiae scientiarum Petropolitanae
10
(
1766
),
544
558
(
1764
), (read at Berlin in april 1762). Also in Opera Omnia, S. 2, vol. 25, pp. 246-257 with corrections and comments by M. Schürer.
19.
García-Naranjo
,
L. C.
,
Marrero
,
J. C.
,
Pérez-Chavela
,
E.
, and
Rodríguez-Olmos
,
M.
, “
Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2
,” e-print arXiv:1505.01452.
20.
Killing
,
W.
, “
Die Rechnung in den nichteuklidischen Raumformen
,”
J. Reine Angew. Math.
1880
(
89
),
265
287
(
1880
).
21.
Kragh
,
H.
, “
Is space Flat? Nineteenth century astronomy and non-Euclidean geometry
,”
J. Astr. Hist. Heritage
15
(
3
),
149
158
(
2012
).
22.
Lagrange
,
J. L.
, Essai sur le problème des trois corps, 1772, Œuvres tome 6.
23.
Liebmann
,
H.
, “
Die Kegelschnitte und die Planetenbewegung im nichteuklidischen Raum
,”
Berichte Königl. Sächsischen Gesell. Wiss., Math. Phys. Klasse
54
,
393
423
(
1902
).
24.
Liebmann
,
H.
, “
Über die Zentralbewegung in der nichteuklidische Geometrie
,”
Berichte Königl. Sächsischen Gesell. Wiss., Math. Phys. Klasse
55
,
146
153
(
1903
).
25.
Lipschitz
,
R.
, “
Extension of the planet-problem to a space of n dimensions and constant integral curvature
,”
Q. J. Pure Appl. Math.
12
,
349
370
(
1873
).
26.
Lobachevsky
,
N. I.
, The new foundations of geometry with full theory of parallels (in Russian), 1835-1838, In Collected Works, V. 2, GITTL, Moscow, 1949, p. 159.
27.
Martínez
,
R.
and
Simó
,
C.
, “
On the stability of the Lagrangian homographic solutions in a curved three-body problem on 𝕊2
,”
Discrete Contin. Dyn. Syst. Ser. A
33
,
1157
1175
(
2013
).
28.
Martínez
,
R.
and
Simó
,
C.
, “
Relative equilibria of the restricted 3-body problem in curved spaces
,” private communication (24 May 2016).
29.
Pérez-Chavela
,
E.
and
Reyes Victoria
,
J. G.
, “
An intrinsic approach in the curved N-body problem. The positive curvature case
,”
Trans. Am. Math. Soc.
364
(
7
),
3805
3827
(
2012
).
30.
Riemann
,
B.
, “
Über die Hypothesen welche der Geometrie zu Grunde liegen
,”
Abhandl. Königl. Ges. Wiss. Gött.
13
(
1854
).
31.
Schering
,
E.
, “
Die Schwerkraft im Gaussischen Räume
,”
Nachr. Königl. Ges. Wiss. Gött.
15
,
311
321
(
1870
).
32.
Schering
,
E.
, “
Die Schwerkraft in mehrfach ausgedehnten Gaussischen und Riemmanschen Räumen
,”
Nachr. Königl. Ges. Wiss. Gött.
6
,
149
159
(
1873
).
33.
Shchepetilov
,
A. V.
, “
Nonintegrability of the two-body problem in constant curvature spaces
,”
J. Phys. A: Math. Gen.
39
,
5787
5806
(
2006
), corrected version at math.DS/0601382.
34.
Tibboel
,
P.
, “
Existence of a class of rotopulsators
,”
J. Math. Anal. Appl.
404
,
185
191
(
2013
).
35.
Tibboel
,
P.
, “
Polygonal homographic orbits in spaces of constant curvature
,”
Proc. Am. Math. Soc.
141
,
1465
1471
(
2013
).
36.
Tibboel
,
P.
, “
Existence of a lower bound for the distance between point masses of relative equilibria in spaces of constant curvature
,”
J. Math. Anal. Appl.
416
,
205
211
(
2014
).
37.
Zhu
,
S.
, “
Eulerian relative equilibria of the curved 3-body problems in 𝕊2
,”
Proc. Am. Math. Soc.
142
,
2837
2848
(
2014
).
You do not currently have access to this content.