We consider the 3-body problem of celestial mechanics in Euclidean, elliptic, and hyperbolic spaces and study how the Lagrangian (equilateral) relative equilibria bifurcate when the Gaussian curvature varies. We thus prove the existence of new classes of orbits. In particular, we find some families of isosceles triangles, which occur in elliptic space.
REFERENCES
1.
Bertrand
, J.
, “Théorème relatif au mouvement d’un point attiré vers un center fixe
,” C. R. Acad. Sci.
77
, 849
–853
(1873
).2.
Bolyai
, W.
and Bolyai
, J.
, Geometrische Untersuchungen
(Hrsg. P. Stäckel, Teubner
, Leipzig-Berlin
, 1913
).3.
Diacu
, F.
, “On the singularities of the curved N-body problem
,” Trans. Am. Math. Soc.
363
(4
), 2249
–2264
(2011
).4.
Diacu
, F.
, “Polygonal homographic orbits of the curved 3-body problem
,” Trans. Am. Math. Soc.
364
, 2783
–2802
(2012
).5.
Diacu
, F.
, “Relative equilibria of the curved N-body problem
,” Atlantis Studies in Dynamical Systems
Vol. 1
(Atlantis Press
, Amsterdam
, 2012
).6.
Diacu
, F.
, “Relative equilibria of the 3-dimensional curved n-body problem
,” Mem. Am. Math. Soc.
228
, 1071
(2013
).7.
Diacu
, F.
, “The curved N-body problem: Risks and rewards
,” Math. Intell.
35
(3
), 24
–33
(2013
).8.
Diacu
, F.
, “The classical N-body problem in the context of curved space
,” Canad. J. Math
(to appear); e-print arXiv:1405.0453.9.
Diacu
, F.
and Kordlou
, S.
, “Rotopulsators of the curved N-body problem
,” J. Differ. Equations
255
, 2709
–2750
(2013
).10.
Diacu
, F.
, Martínez
, R.
, Pérez-Chavela
, E.
, and Simó
, C.
, “On the stability of tetrahedral relative equilibria in the positively curved 4-body problem
,” Physica D
256-7
, 21
–35
(2013
).11.
Diacu
, F.
and Pérez-Chavela
, E.
, “Homographic solutions of the curved 3-body problem
,” J. Differ. Equations
250
, 340
–366
(2011
).12.
Diacu
, F.
, Pérez-Chavela
, E.
, and Santoprete
, M.
, “Saari’s conjecture for the collinear N-body problem
,” Trans. Am. Math. Soc.
357
(10
), 4215
–4223
(2005
).13.
Diacu
, F.
, Pérez-Chavela
, E.
, and Santoprete
, M.
, “The N-body problem in spaces of constant curvature. Part I: Relative equilibria
,” J. Nonlinear Sci.
22
(2
), 247
–266
(2012
).14.
Diacu
, F.
, Pérez-Chavela
, E.
, and Santoprete
, M.
, “The N-body problem in spaces of constant curvature. Part II: Singularities
,” J. Nonlinear Sci.
22
(2
), 267
–275
(2012
).15.
Diacu
, F.
, Pérez-Chavela
, E.
, and Guadalupe Reyes Victoria
, J.
, “An intrinsic approach in the curved N-body problem. The negative curvature case
,” J. Differ. Equations
252
, 4529
–4562
(2012
).16.
Diacu
, F.
and Popa
, S.
, “All Lagrangian relative equilibria have equal masses
,” J. Math. Phys.
55
, 112701
(2014
).17.
Diacu
, F.
and Thorn
, B.
, “Rectangular orbits of the curved 4-body problem
,” Proc. Am. Math. Soc.
143
, 1583
–1593
(2015
).18.
Euler
, L.
, “Considerationes de motu corporum coelestium
,” Novi commentarii academiae scientiarum Petropolitanae
10
(1766
), 544
–558
(1764
), (read at Berlin in april 1762). Also in Opera Omnia, S. 2, vol. 25, pp. 246-257 with corrections and comments by M. Schürer.19.
García-Naranjo
, L. C.
, Marrero
, J. C.
, Pérez-Chavela
, E.
, and Rodríguez-Olmos
, M.
, “Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2
,” e-print arXiv:1505.01452.20.
Killing
, W.
, “Die Rechnung in den nichteuklidischen Raumformen
,” J. Reine Angew. Math.
1880
(89
), 265
–287
(1880
).21.
Kragh
, H.
, “Is space Flat? Nineteenth century astronomy and non-Euclidean geometry
,” J. Astr. Hist. Heritage
15
(3
), 149
–158
(2012
).22.
Lagrange
, J. L.
, Essai sur le problème des trois corps, 1772, Œuvres tome 6.23.
Liebmann
, H.
, “Die Kegelschnitte und die Planetenbewegung im nichteuklidischen Raum
,” Berichte Königl. Sächsischen Gesell. Wiss., Math. Phys. Klasse
54
, 393
–423
(1902
).24.
Liebmann
, H.
, “Über die Zentralbewegung in der nichteuklidische Geometrie
,” Berichte Königl. Sächsischen Gesell. Wiss., Math. Phys. Klasse
55
, 146
–153
(1903
).25.
Lipschitz
, R.
, “Extension of the planet-problem to a space of n dimensions and constant integral curvature
,” Q. J. Pure Appl. Math.
12
, 349
–370
(1873
).26.
Lobachevsky
, N. I.
, The new foundations of geometry with full theory of parallels (in Russian), 1835-1838, In Collected Works, V. 2, GITTL, Moscow, 1949, p. 159.27.
Martínez
, R.
and Simó
, C.
, “On the stability of the Lagrangian homographic solutions in a curved three-body problem on 𝕊2
,” Discrete Contin. Dyn. Syst. Ser. A
33
, 1157
–1175
(2013
).28.
Martínez
, R.
and Simó
, C.
, “Relative equilibria of the restricted 3-body problem in curved spaces
,” private communication (24 May 2016).29.
Pérez-Chavela
, E.
and Reyes Victoria
, J. G.
, “An intrinsic approach in the curved N-body problem. The positive curvature case
,” Trans. Am. Math. Soc.
364
(7
), 3805
–3827
(2012
).30.
Riemann
, B.
, “Über die Hypothesen welche der Geometrie zu Grunde liegen
,” Abhandl. Königl. Ges. Wiss. Gött.
13
(1854
).31.
Schering
, E.
, “Die Schwerkraft im Gaussischen Räume
,” Nachr. Königl. Ges. Wiss. Gött.
15
, 311
–321
(1870
).32.
Schering
, E.
, “Die Schwerkraft in mehrfach ausgedehnten Gaussischen und Riemmanschen Räumen
,” Nachr. Königl. Ges. Wiss. Gött.
6
, 149
–159
(1873
).33.
Shchepetilov
, A. V.
, “Nonintegrability of the two-body problem in constant curvature spaces
,” J. Phys. A: Math. Gen.
39
, 5787
–5806
(2006
), corrected version at math.DS/0601382.34.
Tibboel
, P.
, “Existence of a class of rotopulsators
,” J. Math. Anal. Appl.
404
, 185
–191
(2013
).35.
Tibboel
, P.
, “Polygonal homographic orbits in spaces of constant curvature
,” Proc. Am. Math. Soc.
141
, 1465
–1471
(2013
).36.
Tibboel
, P.
, “Existence of a lower bound for the distance between point masses of relative equilibria in spaces of constant curvature
,” J. Math. Anal. Appl.
416
, 205
–211
(2014
).37.
Zhu
, S.
, “Eulerian relative equilibria of the curved 3-body problems in 𝕊2
,” Proc. Am. Math. Soc.
142
, 2837
–2848
(2014
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.