In this paper, we regularize the Kepler problem on κ-spacetime in several different ways. First, we perform a Moser-type regularization and then we proceed for the Ligon-Schaaf regularization to our problem. In particular, generalizing Heckman and de Laat [J. Symplectic Geom. 10, 463-473 (2012)] in the noncommutative context, we show that the Ligon-Schaaf regularization map following from an adaptation of the Moser regularization can be generalized to the Kepler problem on κ-spacetime.

1.
B.
Cordani
, “
The Kepler problem
,” in
Progress in Mathematical Physics
(
Birkhäuser
,
Basel
,
2003
), Vol.
29
.
2.
V.
Guillemin
and
S.
Sternberg
,
Variations on a Theme by Kepler
(
AMS Colloquium Publications
,
1990
), Vol.
42
.
3.
T.
Levi-Civita
, “
Sur la regularisation du probleme des trois corps
,”
Acta Math.
42
,
99
(
1920
).
4.
J.
Moser
, “
Regularization of Kepler’s problem and the averaging method on a manifold
,”
Commun. Pure Appl. Math.
23
,
609
(
1970
).
5.
J.
Milnor
, “
On the geometry of the Kepler problem
,”
Am. Math. Mon.
90
,
353
(
1983
).
6.
T.
Ligon
and
M.
Schaaf
, “
On the global symmetry of the classical Kepler problem
,”
Rep. Math. Phys.
9
,
281
(
1976
).
7.
R.
Cushman
and
L.
Bates
,
Global Aspects of Classical Integrable Systems
(
Birkhauser
,
Basel
,
1997
).
8.
R.
Cushman
and
J. J.
Duistermaat
, “
A characterization of the Ligon-Schaaf regularization map
,”
Commun. Pure Appl. Math.
50
,
773
(
1997
).
9.
C. M.
Marle
, “
A property of conformally Hamiltonian vector fields; application to the Kepler problem
,”
J. Geom. Mech.
4
,
181
(
2012
).
10.
S.
Hu
and
M.
Santoprete
, “
Regularization of the Kepler problem on the sphere
,”
Canad. J. Math.
66
,
760
(
2014
).
11.
G.
Heckman
and
T.
de Laat
, “
On the regularization of the Kepler problem
,”
J. Symplectic Geom.
10
,
463
(
2012
).
12.
C.
Rovelli
,
Quantum Gravity
(
Cambridge University Press
,
Cambridge UK
,
2004
).
13.
A.
Connes
,
Noncommutative Geometry
(
Academic Press
,
1994
).
14.
A.
Ashtekar
and
J.
Stachel
,
Conceptual Problems of Quantum Gravity
(
Birkhauser
,
Boston, Basel, Berlin
,
1991
).
15.
N.
Seiberg
and
E.
Witten
, “
String theory and noncommutative geometry
,”
J. High Energy Phys.
9909
,
032
(
1999
).
16.
S.
Doplicher
,
K.
Fredenhagen
, and
J.
Roberts
, “
The quantum structure of space-time at the Planck scale and quantum fields
,”
Commun. Math. Phys.
172
,
187
(
1995
).
17.
H.
Snyder
, “
Quantized space-time
,”
Phys. Rev.
71
,
38
(
1947
).
18.
V. O.
Rivelles
, “
A review of noncommutative field theories
,”
J. Phys.: Conf. Ser.
287
,
012012
(
2011
).
19.
V. O.
Rivelles
, “
Noncommutative field theories and gravity
,”
Phys. Lett. B
558
,
191
(
2003
).
20.
G.
Amelino-Camelia
, “
Testable scenario for relativity with minimum length
,”
Phys. Lett. B
510
,
255
(
2001
).
21.
J.
Kowalski-Glikman
, “
Observer independent quantum of mass
,”
Phys. Lett. A
286
,
391
(
2001
).
22.
G.
Amelino-Camelia
,
D.
Benedetti
,
F.
D’Andrea
, and
A.
Procaccini
, “
Comparison of relativity theories with observer independent scales of both velocity and length/mass
,”
Classical Quantum Gravity
20
,
5353
(
2003
).
23.
J.
Lukierski
and
A.
Nowicki
, “
Doubly special relativity versus kappa deformation of relativistic kinematics
,”
Int. J. Mod. Phys. A
18
,
7
(
2003
).
24.
J.
Kowalski-Glikman
and
S.
Nowak
, “
Noncommutative space-time of doubly special relativity theories
,”
Int. J. Mod. Phys. D
12
,
299
(
2003
).
25.
S.
Meljanac
,
A.
Samsarov
,
M.
Stojic
, and
K. S.
Gupta
, “
Kappa-Minkowski space-time and the star product realizations
,”
Eur. Phys. J. C
53
,
295
(
2008
).
26.
E.
Harikumar
and
A. K.
Kapoor
, “
Newton’s equation on the kappa space-time and the Kepler problem
,”
Mod. Phys. Lett. A
25
,
2991
(
2010
).
27.
P.
Guha
,
E.
Harikumar
, and
N. S.
Zuhair
, “
MICZ-Kepler systems in noncommutative space and duality of force laws
,”
Int. J. Mod. Phys. A
29
,
1450187
(
2014
).
28.
P.
Guha
,
E.
Harikumar
, and
N. S.
Zuhair
, “
Fradkin-Bacry-Ruegg-Souriau vector in kappa-deformed space-time
,”
Eur. Phys. J. Plus
130
,
205
(
2015
).
29.
M. R.
Douglas
and
N. A.
Nekrasov
, “
Noncommutative field theory
,”
Rev. Mod. Phys.
73
,
977
(
2001
).
30.
J.
Lukierski
,
H.
Ruegg
, and
W.
Zakrzewski
, “
Classical and quantum mechanics of free κ-relativistic systems
,”
Ann. Phys.
243
,
90
(
1995
).
31.
S.
Kresic-Juric
,
S.
Meljanac
, and
M.
Stojic
, “
Covariant realizations of kappa-deformed space
,”
Eur. Phys. J. C
51
,
229
(
2007
).
32.
E.
Harikumar
,
T.
Juric
, and
S.
Meljanac
, “
Geodesic equation in κ-Minkowski spacetime
,”
Phys. Rev. D
86
,
045002
(
2012
).
33.
G.
Amelino-Camelia
and
M.
Arzano
, “
Coproduct and star product in field theories on Lie-algebra non-commutative space-times
,”
Phys. Rev. D
65
,
084044
(
2002
).
34.
A.
Borowiec
,
Kumar S.
Gupta
,
S.
Meljanac
, and
A.
Pachol
, “
Constraints on the quantum gravity scale from κ-Minkowski spacetime
,”
Europhys. Lett.
92
,
20006
(
2010
).
35.
K. S.
Gupta
,
E.
Harikumar
,
T.
Juric
,
S.
Meljanac
, and
A.
Samsarov
, “
Effects of noncommutativity on the black hole entropy
,”
Adv. High Energy Phys.
2014
,
139172
.
You do not currently have access to this content.