In this work, we study existence, multiplicity, and concentration of positive solutions for the following class of quasilinear problems Δ Φ u + V ( ϵ x ) ϕ ( u ) u = f ( u ) in R N ( N 2 ) , where Φ ( t ) = 0 t ϕ ( s ) s d s is a N-function, ΔΦ is the Φ-Laplacian operator, ϵ is a positive parameter, V : ℝN → ℝ is a continuous function, and f : ℝ → ℝ is a C1-function.

1.
A.
Adams
and
J. F.
Fournier
,
Sobolev Spaces
, 2nd ed. (
Academic Press
,
2003
).
2.
C. O.
Alves
and
G. M.
Figueiredo
, “
Existence and multiplicity of positive solutions to a p-Laplacian equation in ℝN
,”
Differ. Integr. Equations
19
(
2
),
143
162
(
2006
).
3.
C. O.
Alves
and
G. M.
Figueiredo
, “
Multiplicity and concentration of positive solutions for a class of quasilinear problems
,”
Adv. Nonlinear Stud.
11
(
2
),
265
294
(
2011
).
4.
C. O.
Alves
,
G. M.
Figueiredo
, and
J. A.
Santos
, “
Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications
,”
Topol. Methods Nonlinear Anal.
44
(
2
),
435
456
(
2014
).
5.
C. O.
Alves
,
M. L. M.
Carvalho
, and
J. V. A.
Gonçalves
, “
On existence of solution of variational multivalued elliptic equations with critical growth via the Ekeland principle
,”
Commun. Contemp. Math.
17
,
1450038
(
2015
).
6.
C. O.
Alves
and
M. C.
Ferreira
, “
Multi-bump solutions for a class of quasilinear problems involving variable exponents
,”
Ann. Mat. Pura Appl.
194
,
1563
1593
(
2015
).
7.
C. O.
Alves
,
J. V.
Gonçalves
, and
K. O.
Silva
, “
Multiple sign-changing radially symmetric solutions in a general class of quasilinear elliptic equations
,”
Z. Angew. Math. Phys.
66
,
2601
2623
(
2015
).
8.
A.
Ambrosetti
and
A.
Malchiodi
,
Concentration Phenomena for for NLS: Recent Results and New Perspectives. Perspectives in Nonlinear Partial Differential Equations
,
Contemporary Mathematics
Vol.
446
(
American Mathematical Society
,
Providence, RI
,
2007
), pp.
19
30
.
9.
A.
Ambrosetti
,
M.
Badiale
, and
S.
Cingolani
, “
Semiclassical states of nonlinear Schrödinger equations
,”
Arch. Ration. Mech. Anal.
140
,
285
300
(
1997
).
10.
A.
Azzollini
,
P.
d’Avenia
, and
A.
Pomponio
, “
Quasilinear elliptic equations in ℝN via variational methods and Orlicz-Sobolev embeddings
,”
Calculus Var. Partial Differ. Equations
49
,
197
213
(
2014
).
11.
S.
Barile
and
G. M.
Figueiredo
, “
Some classes of eigenvalues problems for generalized p&q-Laplacian type operators on bounded domains
,”
Nonlinear Anal.
119
,
457
468
(
2015
).
12.
R.
Bird
,
R.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Fluid Mechanics
(
John Wiley
,
1987
), Vol.
1
.
13.
G.
Bonanno
,
G. M.
Bisci
, and
V.
Radulescu
, “
Quasilinear elliptic non-homogeneous dirichlet problems through Orlicz-Sobolev spaces
,”
Nonlinear Anal.
75
,
4441
4456
(
2012
).
14.
M.
Mihailescu
and
V.
Radulescu
, “
Existence and multiplicity of solutions for a quasilinear nonhomogeneous problems: An Orlicz-Sobolev space setting
,”
J. Math. Anal. Appl.
330
,
416
432
(
2007
).
15.
H.
Brezis
and
E.
Lieb
, “
A relation between pointwise convergence of functions and convergence of functionals
,”
Proc. Am. Math. Soc.
88
(
3
),
486
490
(
1983
).
16.
D. G.
Costa
, “
On a class of elliptic systems in ℝN
,”
Electron. J. Differ. Equations
7
,
1
14
(
1994
).
17.
M.
del Pino
and
P. L.
Felmer
, “
Local mountain pass for semilinear elliptic problems in unbounded domains
,”
Calculus Var. Partial Differ. Equations
4
(
2
),
121
137
(
1996
).
18.
E.
DiBenedetto
, “
C1,γ local regularity of weak solutions of degenerate elliptic equations
,”
Nonlinear Anal.
7
(
8
),
827
850
(
1985
).
19.
T. K.
Donaldson
and
N. S.
Trudinger
, “
Orlicz-Sobolev spaces and imbedding theorems
,”
J. Funct. Anal.
8
(
1
),
52
75
(
1971
).
20.
G. M.
Figueiredo
, “
Existence and multiplicity of solutions for a class of p&q elliptic problems with critical exponent
,”
Math. Nachr.
286
(
11-12
),
1129
1141
(
2013
).
21.
A.
Floer
and
A.
Weinstein
, “
Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential
,”
J. Funct. Anal.
69
(
3
),
397
408
(
1986
).
22.
J.
Frehse
and
G. A.
Seregin
, “
Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening
,”
Proc. St. Petersburg Math. Soc.
5
,
184
222
(
1998
) [Am. Math. Soc. Trans. II,193, 127-152 (1999)].
23.
M.
Fuchs
and
V.
Osmolovki
, “
Variational integrals on Orlicz-Sobolev spaces
,”
Z. Anal. Anwend.
17
(
2
),
393
415
(
1998
).
24.
M.
Fuchs
and
G.
Seregin
, “
A regularity theory for variational integrals with L log L-growth
,”
Calculus Var. Partial Differ. Equations
6
,
171
187
(
1998
).
25.
M.
Fuchs
and
G.
Seregin
, “
Variational methods for fluids of Prandtl–Eyring type and plastic materials with logarithmic hardening
,”
Math. Methods Appl. Sci.
22
,
317
351
(
1999
).
26.
N.
Fukagai
,
M.
Ito
, and
K.
Narukawa
, “
Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on ℝN
,”
Funkcialaj Ekvacioj
49
(
2
),
235
267
(
2006
).
27.
N.
Fukagai
and
K.
Narukawa
, “
Nonlinear eigenvalue problem for a model equation of an elastic surface
,”
Hiroshima Math. J.
25
(
1
),
19
41
(
1995
).
28.
N.
Fukagai
and
K.
Narukawa
, “
On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems
,”
Ann. Math. Pura Appl.
186
(
3
),
539
564
(
2007
).
29.
N.
Fusco
and
C.
Sbordone
, “
Some remarks on the regularity of minima of anisotropic integrals
,”
Commun. Partial Differ. Equations
18
(
1-2
),
153
167
(
1993
).
30.
C.
Gui
, “
Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method
,”
Commun. Partial Differ. Equations
21
(
5-6
),
787
820
(
1996
).
31.
O. A.
Ladyzhenskaya
and
N. N.
Ural’tseva
,
Linear and Quasilinear Elliptic Equations
(
Academic Press
,
1968
).
32.
V. K.
Le
,
D.
Motreanu
, and
V. V.
Motreanu
, “
On a non-smooth eigenvalue problem in Orlicz-Sobolev spaces
,”
Appl. Anal.
89
(
2
),
229
242
(
2010
).
33.
G. M.
Lieberman
, “
Boundary regularity for solutions of degenerate elliptic equations
,”
Nonlinear Anal.
12
(
11
),
1203
1219
(
1988
).
34.
M.
Mihailescu
,
V.
Radulescu
, and
D.
Repovs
, “
On a non-homogeneous eigenvalue problem involving a potential: An Orlicz-Sobolev space setting
,”
J. Math. Pures Appl.
93
,
132
148
(
2010
).
35.
M.
Mihailescu
and
V.
Radulescu
, “
Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces
,”
C. R. Acad. Sci., Ser. A
346
,
401
406
(
2008
).
36.
G. M.
Bisci
and
D.
Repovs
, “
Multiple solutions for elliptic equations involving a general operator in divergence form
,”
Ann. Acad. Sci. Fenn. Math.
39
,
259
273
(
2014
).
37.
Y. G.
Oh
, “
Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V)α
,”
Commun. Partial Differ. Equations
13
(
12
),
1499
1519
(
1988
).
38.
Y. G.
Oh
, “
On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential
,”
Commun. Math. Phys.
131
(
2
),
223
253
(
1990
).
39.
M. N.
Rao
and
Z. D.
Ren
,
Theory of Orlicz Spaces
(
Marcel Dekker
,
New York
,
1985
).
40.
P. H.
Rabinowitz
, “
On a class of nonlinear Schrödinger equations
,”
Z. Angew. Math. Phys.
43
(
2
),
270
291
(
1992
).
41.
J. A.
Santos
, “
Multiplicity of solutions for quasilinear equations involving critical Orlicz-Sobolev nonlinear terms
,”
Electron J. Differ. Equations
2013
(
249
),
1
13
(
2013
).
42.
J. A.
Santos
and
S. H. M.
Soares
, “
Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces
,”
J. Math. Anal. Appl.
428
,
1035
1053
(
2015
).
43.
Z.
Tan
and
F.
Fang
, “
Orlicz-Sobolev versus Holder local minimizer and multiplicity results for quasilinear elliptic equations
,”
J. Math. Anal. Appl.
402
(
1
),
348
370
(
2013
).
44.
N. S.
Trudinger
, “
On Harnack type inequalities and their applicatoin to quasilinear elliptic equations
,”
Commun. Pure Appl. Math.
721
747
(
1967
).
45.
X.
Wang
, “
On concentration of positive bound states of nonlinear Schrödinger equations
,”
Commun. Math. Phys.
53
,
229
244
(
1993
).
46.
M.
Willem
,
Minimax Theorems
(
Birkhauser
,
1996
).
47.
C.
He
and
G.
Li
, “
The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to up−1 at infinity in ℝN
,”
Nonlinear Analysis
68
,
1100
1119
(
2008
).
You do not currently have access to this content.