In this work, we study existence, multiplicity, and concentration of positive solutions for the following class of quasilinear problems where is a N-function, ΔΦ is the Φ-Laplacian operator, ϵ is a positive parameter, V : ℝN → ℝ is a continuous function, and f : ℝ → ℝ is a C1-function.
REFERENCES
1.
2.
C. O.
Alves
and G. M.
Figueiredo
, “Existence and multiplicity of positive solutions to a p-Laplacian equation in ℝN
,” Differ. Integr. Equations
19
(2
), 143
–162
(2006
).3.
C. O.
Alves
and G. M.
Figueiredo
, “Multiplicity and concentration of positive solutions for a class of quasilinear problems
,” Adv. Nonlinear Stud.
11
(2
), 265
–294
(2011
).4.
C. O.
Alves
, G. M.
Figueiredo
, and J. A.
Santos
, “Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications
,” Topol. Methods Nonlinear Anal.
44
(2
), 435
–456
(2014
).5.
C. O.
Alves
, M. L. M.
Carvalho
, and J. V. A.
Gonçalves
, “On existence of solution of variational multivalued elliptic equations with critical growth via the Ekeland principle
,” Commun. Contemp. Math.
17
, 1450038
(2015
).6.
C. O.
Alves
and M. C.
Ferreira
, “Multi-bump solutions for a class of quasilinear problems involving variable exponents
,” Ann. Mat. Pura Appl.
194
, 1563
–1593
(2015
).7.
C. O.
Alves
, J. V.
Gonçalves
, and K. O.
Silva
, “Multiple sign-changing radially symmetric solutions in a general class of quasilinear elliptic equations
,” Z. Angew. Math. Phys.
66
, 2601
–2623
(2015
).8.
A.
Ambrosetti
and A.
Malchiodi
, Concentration Phenomena for for NLS: Recent Results and New Perspectives. Perspectives in Nonlinear Partial Differential Equations
, Contemporary Mathematics
Vol. 446
(American Mathematical Society
, Providence, RI
, 2007
), pp. 19
–30
.9.
A.
Ambrosetti
, M.
Badiale
, and S.
Cingolani
, “Semiclassical states of nonlinear Schrödinger equations
,” Arch. Ration. Mech. Anal.
140
, 285
–300
(1997
).10.
A.
Azzollini
, P.
d’Avenia
, and A.
Pomponio
, “Quasilinear elliptic equations in ℝN via variational methods and Orlicz-Sobolev embeddings
,” Calculus Var. Partial Differ. Equations
49
, 197
–213
(2014
).11.
S.
Barile
and G. M.
Figueiredo
, “Some classes of eigenvalues problems for generalized p&q-Laplacian type operators on bounded domains
,” Nonlinear Anal.
119
, 457
–468
(2015
).12.
R.
Bird
, R.
Armstrong
, and O.
Hassager
, Dynamics of Polymeric Liquids, Fluid Mechanics
(John Wiley
, 1987
), Vol. 1
.13.
G.
Bonanno
, G. M.
Bisci
, and V.
Radulescu
, “Quasilinear elliptic non-homogeneous dirichlet problems through Orlicz-Sobolev spaces
,” Nonlinear Anal.
75
, 4441
–4456
(2012
).14.
M.
Mihailescu
and V.
Radulescu
, “Existence and multiplicity of solutions for a quasilinear nonhomogeneous problems: An Orlicz-Sobolev space setting
,” J. Math. Anal. Appl.
330
, 416
–432
(2007
).15.
H.
Brezis
and E.
Lieb
, “A relation between pointwise convergence of functions and convergence of functionals
,” Proc. Am. Math. Soc.
88
(3
), 486
–490
(1983
).16.
D. G.
Costa
, “On a class of elliptic systems in ℝN
,” Electron. J. Differ. Equations
7
, 1
–14
(1994
).17.
M.
del Pino
and P. L.
Felmer
, “Local mountain pass for semilinear elliptic problems in unbounded domains
,” Calculus Var. Partial Differ. Equations
4
(2
), 121
–137
(1996
).18.
E.
DiBenedetto
, “C1,γ local regularity of weak solutions of degenerate elliptic equations
,” Nonlinear Anal.
7
(8
), 827
–850
(1985
).19.
T. K.
Donaldson
and N. S.
Trudinger
, “Orlicz-Sobolev spaces and imbedding theorems
,” J. Funct. Anal.
8
(1
), 52
–75
(1971
).20.
G. M.
Figueiredo
, “Existence and multiplicity of solutions for a class of p&q elliptic problems with critical exponent
,” Math. Nachr.
286
(11-12
), 1129
–1141
(2013
).21.
A.
Floer
and A.
Weinstein
, “Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential
,” J. Funct. Anal.
69
(3
), 397
–408
(1986
).22.
J.
Frehse
and G. A.
Seregin
, “Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening
,” Proc. St. Petersburg Math. Soc.
5
, 184
–222
(1998
) [Am. Math. Soc. Trans. II,193, 127-152 (1999)].23.
M.
Fuchs
and V.
Osmolovki
, “Variational integrals on Orlicz-Sobolev spaces
,” Z. Anal. Anwend.
17
(2
), 393
–415
(1998
).24.
M.
Fuchs
and G.
Seregin
, “A regularity theory for variational integrals with L log L-growth
,” Calculus Var. Partial Differ. Equations
6
, 171
–187
(1998
).25.
M.
Fuchs
and G.
Seregin
, “Variational methods for fluids of Prandtl–Eyring type and plastic materials with logarithmic hardening
,” Math. Methods Appl. Sci.
22
, 317
–351
(1999
).26.
N.
Fukagai
, M.
Ito
, and K.
Narukawa
, “Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on ℝN
,” Funkcialaj Ekvacioj
49
(2
), 235
–267
(2006
).27.
N.
Fukagai
and K.
Narukawa
, “Nonlinear eigenvalue problem for a model equation of an elastic surface
,” Hiroshima Math. J.
25
(1
), 19
–41
(1995
).28.
N.
Fukagai
and K.
Narukawa
, “On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems
,” Ann. Math. Pura Appl.
186
(3
), 539
–564
(2007
).29.
N.
Fusco
and C.
Sbordone
, “Some remarks on the regularity of minima of anisotropic integrals
,” Commun. Partial Differ. Equations
18
(1-2
), 153
–167
(1993
).30.
C.
Gui
, “Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method
,” Commun. Partial Differ. Equations
21
(5-6
), 787
–820
(1996
).31.
O. A.
Ladyzhenskaya
and N. N.
Ural’tseva
, Linear and Quasilinear Elliptic Equations
(Academic Press
, 1968
).32.
V. K.
Le
, D.
Motreanu
, and V. V.
Motreanu
, “On a non-smooth eigenvalue problem in Orlicz-Sobolev spaces
,” Appl. Anal.
89
(2
), 229
–242
(2010
).33.
G. M.
Lieberman
, “Boundary regularity for solutions of degenerate elliptic equations
,” Nonlinear Anal.
12
(11
), 1203
–1219
(1988
).34.
M.
Mihailescu
, V.
Radulescu
, and D.
Repovs
, “On a non-homogeneous eigenvalue problem involving a potential: An Orlicz-Sobolev space setting
,” J. Math. Pures Appl.
93
, 132
–148
(2010
).35.
M.
Mihailescu
and V.
Radulescu
, “Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces
,” C. R. Acad. Sci., Ser. A
346
, 401
–406
(2008
).36.
G. M.
Bisci
and D.
Repovs
, “Multiple solutions for elliptic equations involving a general operator in divergence form
,” Ann. Acad. Sci. Fenn. Math.
39
, 259
–273
(2014
).37.
Y. G.
Oh
, “Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V)α
,” Commun. Partial Differ. Equations
13
(12
), 1499
–1519
(1988
).38.
Y. G.
Oh
, “On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential
,” Commun. Math. Phys.
131
(2
), 223
–253
(1990
).39.
40.
P. H.
Rabinowitz
, “On a class of nonlinear Schrödinger equations
,” Z. Angew. Math. Phys.
43
(2
), 270
–291
(1992
).41.
J. A.
Santos
, “Multiplicity of solutions for quasilinear equations involving critical Orlicz-Sobolev nonlinear terms
,” Electron J. Differ. Equations
2013
(249
), 1
–13
(2013
).42.
J. A.
Santos
and S. H. M.
Soares
, “Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces
,” J. Math. Anal. Appl.
428
, 1035
–1053
(2015
).43.
Z.
Tan
and F.
Fang
, “Orlicz-Sobolev versus Holder local minimizer and multiplicity results for quasilinear elliptic equations
,” J. Math. Anal. Appl.
402
(1
), 348
–370
(2013
).44.
N. S.
Trudinger
, “On Harnack type inequalities and their applicatoin to quasilinear elliptic equations
,” Commun. Pure Appl. Math.
721
–747
(1967
).45.
X.
Wang
, “On concentration of positive bound states of nonlinear Schrödinger equations
,” Commun. Math. Phys.
53
, 229
–244
(1993
).46.
47.
C.
He
and G.
Li
, “The existence of a nontrivial solution to the p&q-Laplacian problem with nonlinearity asymptotic to up−1 at infinity in ℝN
,” Nonlinear Analysis
68
, 1100
–1119
(2008
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.