In this paper, we prove the existence of quasi-periodic solutions of the multidimensional nonlinear beam equation with finitely differentiable nonlinearities and quasi-periodic forcing in time.

1.
Berti
,
M.
and
Bolle
,
P.
, “
Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential
,”
Nonlinearity
25
(
9
),
2579
2613
(
2012
).
2.
Berti
,
M.
and
Bolle
,
P.
, “
Quasi-periodic solutions with Sobolev regularity of NLS on 𝕋d with a multiplicative potential
,”
J. Eur. Math. Soc.
15
(
1
),
229
286
(
2013
).
3.
Berti
,
M.
,
Corsi
,
L.
, and
Procesi
,
M.
, “
An abstract Nash–Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds
,” preprint arXiv:1311.6943 (
2013
).
4.
Berti
,
M.
,
Corsi
,
L.
, and
Procesi
,
M.
, “
An abstract Nash–Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds
,”
Commun. Math. Phys.
334
(
3
),
1413
1454
(
2015
).
5.
Bourgain
,
J.
, “
Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE
,”
Int. Math. Res. Not.
1994
(
11
),
476
497
.
6.
Bourgain
,
J.
, “
On melnikov’s persistency problems
,”
Math. Res. Lett
4
,
445
458
(
1997
).
7.
Bourgain
,
J.
, “
Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations
,”
Ann. Math.
148
(
2
),
363
439
(
1998
).
8.
Bourgain
,
J.
, “
Estimates on green’s functions, localization and the quantum kicked rotor model
,”
Ann. Math.
156
(
1
),
249
294
(
2002
).
9.
Bourgain
,
J.
,
Green’s Function Estimates for Lattice Schrödinger Operators and Applications
,
Annals of Mathematics Studies
Vol.
158
(
Princeton University Press
,
2005
).
10.
Bourgain
,
J.
, “
Anderson localization for quasi-periodic lattice Schrödinger operators on ℤd, d arbitary
,”
Geom. Funct. Anal.
17
(
3
),
682
706
(
2007
).
11.
Bourgain
,
J.
,
Goldstein
,
M.
, and
Schlag
,
W.
, “
Anderson localization for Schrödinger operators on ℤ2 with quasi-periodic potential
,”
Acta. Math.
188
(
1
),
41
86
(
2002
).
12.
Chang
,
J.
,
Gao
,
Y.
, and
Li
,
Y.
, “
Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies
,”
J. Math. Phys.
56
,
052701
(
2015
).
13.
Eliasson
,
L. H.
, “
Perturbations of stable invariant tori for Hamiltonian systems
,”
Ann. Scuola Norm. Sup. Pisa
15
(
1
),
115
147
(
1988
).
14.
Eliasson
,
L. H.
,
Grébert
,
B.
, and
Kuksin
,
S. B.
, “
KAM for the nonliear beam equation 1: Small-amplitude solutions
,” preprint arXiv:1412.2803 (
2014
).
15.
Eliasson
,
L. H.
,
Grébert
,
B.
, and
Kuksin
,
S. B.
, “
KAM for the nonliear beam equation 2: A normal form theorem
,” preprint arXiv:1502.02262 (
2015
).
16.
Eliasson
,
L. H.
and
Kuksin
,
S. B.
, “
KAM for the nonlinear Schrödinger equation
,”
Ann. Math.
172
(
1
),
371
435
(
2010
).
17.
Geng
,
J.
and
You
,
J.
, “
KAM tori of Hamiltonian perturbations of 1D linear beam equations
,”
J. Math. Anal. Appl.
277
(
1
),
104
121
(
2003
).
18.
Geng
,
J.
and
You
,
J.
, “
A KAM theorem for Hamiltonian partial differetial equations in higher dimensional spaces
,”
Commun. Math. Phys.
262
(
2
),
343
372
(
2006
).
19.
Geng
,
J.
and
You
,
J.
, “
KAM tori for higher dimesional beam equations with constant potentials
,”
Nonlinearity
19
(
10
),
2405
2423
(
2006
).
20.
Liang
,
Z.
and
Geng
,
J.
, “
Quasi-periodic solutions for 1D resonant beam equation
,”
Commun. Pure. Appl. Anal.
5
(
4
),
839
853
(
2006
).
21.
Lions
,
J.-L.
and
Magenes
,
E.
,
Problèmes Aux Limites Non Homogènes Et Applications
(
Dunod
,
Paris
,
1968
).
22.
Mi
,
L.
and
Cong
,
H.
, “
Quasi-periodic solutions for d-dimensional beam equation with derivative nonlinear perturbation
,”
J. Math. Phys.
56
,
072702
(
2015
).
23.
Tuo
,
Q.
and
Si
,
J.
, “
Quasi-periodic solutions of nonlinear beam equations with quintic quasi-periodic nonlinearities
,”
Electron. J. Differ. Equations
2015
(
11
),
1
20
(
2015
).
24.
Wang
,
Y.
, “
Quasi-periodic solutions of a quasi-periodically forced nonlinear beam equation
,”
Commun. Nonlinear Sci. Numer. Simul.
17
(
6
),
2682
2700
(
2012
).
25.
Wang
,
Y.
and
Si
,
J.
, “
A result on quasi-periodic solutions of a nonlinear beam equation with a quasi-periodic forcing term
,”
Z. Angew. Math. Phys.
63
(
1
),
189
190
(
2012
).
26.
Xu
,
X.
and
Geng
,
J.
, “
KAM tori for higher dimesional beam equations with a fixed constant potential
,”
Sci. China, Ser. A: Math.
52
(
9
),
2007
2018
(
2009
).
You do not currently have access to this content.