We consider wavefunctions which are non-negative in some tensor product basis. We study what possible teleportation can occur in such wavefunctions, giving a complete answer in some cases (when one system is a qubit) and partial answers elsewhere. We use this to show that a one-dimensional wavefunction which is non-negative and has zero correlation length can be written in a “coherent Gibbs state” form, as explained later. We conjecture that such holds in higher dimensions. Additionally, some results are provided on possible teleportation in general wavefunctions, explaining how Schmidt coefficients before measurement limit the possible Schmidt coefficients after measurement, and on the absence of a “generalized area law” [D. Aharonov et al., in Proceedings of Foundations of Computer Science (FOCS) (IEEE, 2014), p. 246; e-print arXiv.org:1410.0951] even for Hamiltonians with no sign problem. One of the motivations for this work is an attempt to prove a conjecture about ground state wavefunctions which have an “intrinsic” sign problem that cannot be removed by any quantum circuit. We show a weaker version of this, showing that the sign problem is intrinsic for commuting Hamiltonians in the same phase as the double semion model under the technical assumption that TQO-2 holds [S. Bravyi et al., J. Math. Phys. 51, 093512 (2010)].

1.
A. Yu.
Kitaev
,
A. H.
Shen
, and
M. N.
Vyalyi
, “
Classical and Quantum Computation
,”
Graduate Studies in Mathematics
Vol.
47
(
American Mathematical Society
,
Providence, RI
,
2002
).
2.
S.
Bravyi
,
D.
DiVincenzo
,
R.
Oliveira
, and
B.
Terhal
, “
The complexity of stoquastic local Hamiltonian problems
,”
QIC
8
,
0361
(
2008
).
3.
D.
Aharonov
,
A. W.
Harrow
,
Z.
Landau
,
D.
Nagaj
,
M.
Szegedy
, and
U.
Vazirani
, “
Local tests of global entanglement and a counterexample to the generalized area law
,” in
Proceedings of Foundations of Computer Science (FOCS)
(
IEEE
,
2014
), p.
246
; e-print arXiv.org:1410.0951.
4.
M. A.
Levin
and
X.-G.
Wen
,
Phys. Rev. B
71
,
045110
(
2005
).
5.
M. P. A.
Fisher
, private communication (
2013
).
6.
M. H.
Freedman
, private communication (
2013
).
7.
S.
Bravyi
,
M. B.
Hastings
, and
S.
Michalakis
, “
Topological quantum order: Stability under local perturbations
,”
J. Math. Phys.
51
,
093512
(
2010
).
8.
S.
Bravyi
and
M. B.
Hastings
, “
A short proof of stability of topological order under local perturbations
,”
Commun. Math. Phys.
307
,
609
(
2011
).
9.
J.
Haah
, e-print arXiv:1407.2926.
10.
S. B.
Bravyi
and
A. Yu.
Kitaev
, “
Quantum codes on a lattice with boundary
,” e-print arXiv:quant-ph/9811052.
11.
K.
Walker
and
Z.
Wang
, “
(3 + 1)-TQFTS and topological insulators
,”
Front. Phys.
7
,
150
(
2012
);
M. H.
Freedman
and
M. B.
Hastings
, e-print arXiv:1507.05676.
12.
J.
Besag
,
J. R. Stat. Soc. B
36
,
192
(
1974
).
13.
M. B.
Hastings
, “
Entropy and entanglement in quantum ground states
,”
Phys. Rev. B
76
,
035114
(
2007
).
14.
A.
Ben-Aroya
and
A.
Ta-Shma
, “
Quantum expanders and the quantum entropy difference problem
,” e-print arXiv:quant-ph/0702129.
15.
M.
Fannes
,
B.
Nachtergaele
, and
R. F.
Werner
, “
Finitely correlated states on quantum spin chains
,”
Commun. Math. Phys.
144
,
443
490
(
1992
).
16.
H.
Moradi
and
X.-G.
Wen
, e-print arXiv:1401.0518.
18.
D. P.
DiVincenzo
,
C. A.
Fuchs
,
H.
Mabuchi
,
J. A.
Smolin
,
A. V.
Thapliyal
, and
A.
Uhlmann
, “
Entanglement of assistance
,” in
Proceedings of Quantum Computing and Quantum Communications: First NASA International Conference, Palm Springs, 1998
(
Springer LNCS
,
Heidelberg
,
1999
), Vol.
1509
, pp.
247
257
.
19.
J. A.
Smolin
,
F.
Verstraete
, and
A.
Winter
,
Phys. Rev. A
72
,
052317
(
2005
).
20.
C. A.
Fuchs
and
J.
van de Graaf
,
IEEE Trans. Inf. Theory
45
,
1216
(
1999
).
21.
M. B.
Hastings
and
A. W.
Harrow
,
QIC
9
,
336
(
2009
).
You do not currently have access to this content.