We show that a modification of Wigner’s induced representation for the description of a relativistic particle with spin can be used to construct spinors and tensors of arbitrary rank, with invariant decomposition over angular momentum. In particular, scalar and vector fields, as well as the representations of their transformations, are constructed. The method that is developed here admits the construction of wave packets and states of a many body relativistic system with definite total angular momentum. Furthermore, a Pauli-Lubanski operator is constructed on the orbit of the induced representation which provides a Casimir operator for the Poincaré group and which contains the physical intrinsic angular momentum of the particle covariantly.

1.
E. C. G.
Stueckelberg
,
Helv. Phys. Acta
14
,
588
(
1941
).
2.
L. P.
Horwitz
and
C.
Piron
,
Helv. Phys. Acta
46
,
316
(
1973
).
4.
L. P.
Horwitz
and
Y.
Rabin
,
Lett. Nuovo Cimento
17
,
501
(
1976
).
5.
F.
Lindner
,
M. G.
Schatzel
,
H.
Walther
,
A.
Baltuska
,
E.
Goulielmakis
,
F.
Krausz
,
D. B.
Milosevic
,
D.
Bauer
,
W.
Becker
, and
G. G.
Paulus
,
Phys. Rev. Lett.
91
,
253004
(
2003
);
[PubMed]
F.
Lindner
,
M. G.
Schatzel
,
H.
Walther
,
A.
Baltuska
,
E.
Goulielmakis
,
F.
Krausz
,
D. B.
Milosevic
,
D.
Bauer
,
W.
Becker
, and
G. G.
Paulus
,
Phys. Rev. Lett.
95
,
040401
(
2005
).
[PubMed]
7.
L. P.
Horwitz
and
Y.
Lavie
,
Phys. Rev. D
26
,
819
(
1982
).
8.
R.
Arshansky
and
L. P.
Horwitz
,
J. Math. Phys.
30
,
66
(
1989
);
R.
Arshansky
and
L. P.
Horwitz
,
J. Math. Phys.
30
,
380
(
1989
).
9.
R.
Arshansky
and
L. P.
Horwitz
,
Found. Phys.
15
,
701
(
1985
).
10.
E.
Wigner
,
Ann. Math., Second Ser.
40
,
149
204
(
1939
).
11.
G. W.
Mackey
,
Induced Representations of Groups and Quantum Mechanics
(
Benjamin
,
New York
,
1968
).
12.
B. L.
van der Waerden
, in
Group Theory and Quantum Mechanics
(
Springer-Verlag
,
Berlin Heidelberg, New York
,
1974
), Chap. III, pp.
114
122
.
13.
L. P.
Horwitz
and
R.
Arshansky
,
J. Phys. A: Math. Gen.
15
,
L659
(
1982
);
C.
Piron
and
F.
Reuse
,
Helv. Phys. Acta
51
,
146
(
1978
).
14.
L. P.
Horwitz
,
J. Phys. A: Math. Theor.
46
,
035305
(
2013
).
15.
J.
Schwinger
,
Phys. Rev.
74
,
1439
(
1948
).
16.
S.
Tomonaga
,
Prog. Theor. Phys.
1
,
27
(
1946
).
17.
M.
Kaku
,
Quantum Field Theory
(
Oxford University Press
,
1993
), p.
55
.
18.
H. F.
Jones
,
Groups, Representations and Physics
(
CRC Press
,
1998
).
19.
A. P.
French
and
E. F.
Taylor
,
Introduction to Quantum Physics
(
The Massachusetts Institute of Technology
,
1978
).
20.
21.
L. C.
Biedenharn
and
J. D.
Louck
, in
Angular Momentum in Quantum Physics
(
Cambridge University Press
,
1981
), Chap. 3.
22.
W.
Rarita
and
J.
Schwinger
,
Phys. Rev. Lett.
60
,
61
(
1941
).
23.
L. C.
Biedenharn
and
J. D.
Louck
, in
The Racah-Wigner Algebra in Quantum Theory
(
Cambridge University Press
,
1981
), Chap. 5, Topic 12.
24.
A.
Bennett
,
J. Phys. A: Math. Theor.
45
,
285302
(
2012
).
25.
M. E.
Peskin
and
D. V.
Schroeder
, in
An Introduction to Quantum Field Theory
(
Perseus Books Publishing LLC
,
1995
), Chap. 5.
26.
S.
Weinberg
, in
The Quantum Theory of Fields
(
Cambridge University Press
,
1995
), Chap. 5.
27.
S.
Weinberg
, in
The Quantum Theory of Fields
(
Cambridge University Press
,
1995
), Chap. 31.
29.
Y.
Aharonov
, personal communication (1983).
30.

As Kaku17 points out, the usual Pauli-Lubanski operator is only related to the angular momentum of the particle in the rest frame.

31.

Weinberg19 has constructed a somewhat similar mapping for tensor fields using the nonunitary decomposition of the Lorentz algebra in order to achieve the Feynman rules for fields of any spin.

32.

In his calculation of the anomalous moment of the electron, Schwinger,15 using a formalism closely related to that of Stueckelberg,1 set the electric field equal to zero.

33.

Note that the projection hμν effectively brings the metric into a three dimensional Euclidean space with signature (+++) by the operation hμνgνλhλκ = hμκ.

34.

The second term of (4.5) is Hermitian on integration over the nμ foliation, an intrinsic part of the scalar product on the full Hilbert space.

You do not currently have access to this content.