We prove the non-abelian Poincaré lemma in higher gauge theory in two different ways. That is, we show that every flat local connective structure is gauge trivial. The first method uses a result by Jacobowitz [J. Differ. Geom. 13, 361 (1978)] which states solvability conditions for differential equations of a certain type. The second method extends a proof by Voronov [Proc. Am. Math. Soc. 140, 2855 (2012)] and yields the explicit gauge parameters connecting a flat local connective structure to the trivial one. Finally, we show how higher flatness appears as a necessary integrability condition of a linear system which featured in recently developed twistor descriptions of higher gauge theories.

1.
J. C.
Baez
and
U.
Schreiber
, e-print arXiv:hep-th/0412325 [hep-th].
2.
H.
Sati
,
U.
Schreiber
, and
J.
Stasheff
, in
Quantum Field Theory
, edited by
B.
Fauser
,
J.
Tolksdorf
, and
E.
Zeidler
(
Birkhauser
,
2009
), p.
303
; e-print arXiv:0801.3480 [math.DG].
3.
J. C.
Baez
and
J.
Huerta
,
Gen. Relativ. Gravitation
43
,
2335
(
2011
); e-print arXiv:1003.4485 [hep-th].
4.
E.
Witten
, in
Proceedings of Strings 95
(
University of Southern California
,
1995
); e-print arXiv:hep-th/9507121.
5.
C.
Saemann
and
M.
Wolf
,
Commun. Math. Phys.
328
,
527
(
2014
) ; e-print arXiv:1205.3108 [hep-th].
6.
C.
Saemann
and
M.
Wolf
,
Lett. Math. Phys.
104
,
1147
(
2014
) ; e-print arXiv:1305.4870 [hep-th].
7.
B.
Jurco
,
C.
Saemann
, and
M.
Wolf
,
J. High Energy Phys.
1504
,
087
(
2015
) ; e-print arXiv:1403.7185 [hep-th].
8.
H.
Jacobowitz
,
J. Differ. Geom.
13
,
361
(
1978
).
9.
T.
Voronov
,
Proc. Am. Math. Soc.
140
,
2855
(
2012
) ; e-print arXiv:0905.0287 [math.DG].
10.
K.
Igusa
, e-print arXiv:0912.0249 [math.AT].
11.
R. L.
Bryant
,
S. S.
Chern
,
R. B.
Gardner
,
H. L.
Goldschmidt
, and
P. A.
Griffiths
,
Mathematical Sciences Research Institute Publications
(
Springer-Verlag
,
New York
,
1991
), Vol.
18
, p.
viii+475
.
12.
L.
Breen
and
W.
Messing
,
Adv. Math.
198
,
732
(
2005
) ; e-print arXiv:math.AG/0106083.
13.
P.
Aschieri
,
L.
Cantini
, and
B.
Jurčo
,
Commun. Math. Phys.
254
,
367
(
2005
) ; e-print arXiv:hep-th/0312154.
14.
T.
Bartels
, “
Higher gauge theory I: 2-Bundles
,” Ph.D. thesis,
University of California
, Riverside, CA,
2006
; e-print arXiv:math.CT/0410328 [math.CT].
15.
J. C.
Baez
and
A. D.
Lauda
,
Theory Appl. Categories
12
,
423
(
2004
) ; e-print arXiv:math.QA/0307200 [math].
16.
J. F.
Martins
and
R.
Picken
,
Differ. Geom. Appl.
29
,
179
(
2011
) ; e-print arXiv:0907.2566 [math.CT].
17.
B.
Jurčo
,
Int. J. Geom. Methods Mod. Phys.
08
,
49
(
2011
) ; e-print arXiv:0911.1552 [math.DG].
18.
D.
Conduché
,
J. Pure Appl. Algebra
34
,
155
(
1984
).
19.
U.
Schreiber
and
K.
Waldorf
,
Homol., Homotopy Appl.
13
,
143
(
2011
) ; e-print arXiv:0802.0663 [math.DG].
21.
J. D.
Stasheff
,
Trans. Am. Math. Soc.
108
,
275
(
1963
).
22.
J. D.
Stasheff
,
Trans. Am. Math. Soc.
108
,
293
(
1963
).
23.
J.
Stasheff
,
Quantum Groups (Leningrad, 1990)
,
Lecture Notes in Mathematics
Vol.
1510
(
Springer
,
Berlin
,
1992
), p.
120137
.
24.
T.
Lada
and
J.
Stasheff
,
Int. J. Theor. Phys.
32
,
1087
(
1993
) ; e-print arXiv:hep-th/9209099.
25.
M.
Markl
,
S.
Shnider
, and
J.
Stasheff
,
Mathematical Surveys and Monographs
(
American Mathematical Society
,
2002
).
You do not currently have access to this content.