We are concerned with the problem of detecting with high probability whether a wave function has collapsed or not, in the following framework: A quantum system with a d-dimensional Hilbert space is initially in state ψ; with probability 0 < p < 1, the state collapses relative to the orthonormal basis b1, …, bd. That is, the final state ψ′ is random, it is ψ with probability 1 − p and bk (up to a phase) with p times Born’s probability . Now an experiment on the system in state ψ′ is desired that provides information about whether or not a collapse has occurred. Elsewhere [C. W. Cowan and R. Tumulka, J. Phys. A: Math. Theor. 47, 195303 (2014)], we identify and discuss the optimal experiment in case that ψ is either known or random with a known probability distribution. Here, we present results about the case that no a priori information about ψ is available, while we regard p and b1, …, bd as known. For certain values of p, we show that the set of ψs for which any experiment is more reliable than blind guessing is at most half the unit sphere; thus, in this regime, any experiment is of questionable use, if any at all. Remarkably, however, there are other values of p and experiments such that the set of ψs for which is more reliable than blind guessing has measure greater than half the sphere, though with a conjectured maximum of 64% of the sphere.
Skip Nav Destination
Article navigation
August 2015
Research Article|
August 26 2015
Detecting wave function collapse without prior knowledge
Charles Wesley Cowan;
Charles Wesley Cowan
a)
Department of Mathematics,
Rutgers University
, Hill Center, 110 Frelinghuysen Road, Piscataway, New Jersey 08854-8019, USA
Search for other works by this author on:
Roderich Tumulka
Roderich Tumulka
b)
Department of Mathematics,
Rutgers University
, Hill Center, 110 Frelinghuysen Road, Piscataway, New Jersey 08854-8019, USA
Search for other works by this author on:
a)
E-mail: cwcowan@math.rutgers.edu
b)
E-mail: tumulka@math.rutgers.edu
J. Math. Phys. 56, 082103 (2015)
Article history
Received:
February 20 2014
Accepted:
August 09 2015
Citation
Charles Wesley Cowan, Roderich Tumulka; Detecting wave function collapse without prior knowledge. J. Math. Phys. 1 August 2015; 56 (8): 082103. https://doi.org/10.1063/1.4928933
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
44
Views
Citing articles via
Related Content
Some Comments on the Formal Structure of Spontaneous Localization Theories
AIP Conference Proceedings (June 2006)
Consistency of multi-time Dirac equations with general interaction potentials
J. Math. Phys. (July 2016)
Accurate evaluation of interface state density in SiC metal-oxide-semiconductor structures using surface potential based on depletion capacitance
J. Appl. Phys. (January 2012)
Multi-time Schrödinger equations cannot contain interaction potentials
J. Math. Phys. (March 2014)
On an inhomogeneous Schrödinger equation and its solutions in scattering theory
J. Math. Phys. (July 2008)