Universal velocity addition formulas analogous to the well-known formula in special relativity are found for four geometrically defined relative velocities in a large class of Robertson-Walker spacetimes. Explicit examples are given. The special relativity result is recovered as a special case, and it is shown that the spectroscopic relative velocity, in contrast to three other geometric relative velocities, follows the same addition law as in special relativity for comoving observers in Robertson-Walker cosmologies.

1.
V. J.
Bolós
, “
Intrinsic definitions of ‘relative velocity’ in general relativity
,”
Commun. Math. Phys.
273
,
217
236
(
2007
); e-print arXiv:gr-qc/0506032.
2.
D.
Klein
and
P.
Collas
, “
Recessional velocities and Hubble’s Law in Schwarzschild-de Sitter space
,”
Phy. Rev. D
81
,
063518
(
2010
); e-print arXiv:1001.1875.
3.
D.
Klein
and
E.
Randles
, “
Fermi coordinates, simultaneity, and expanding space in Robertson-Walker cosmologies
,”
Ann. Henri Poincare
12
,
303
328
(
2011
); e-print arXiv:1010.0588
4.
V. J.
Bolós
and
D.
Klein
, “
Relative velocities for radial motion in expanding Robertson-Walker spacetimes
,”
Gen. Relativ. Gravitation
44
,
1361
1391
(
2012
); e-print arXiv:1106.3859.
5.
V. J.
Bolós
,
S.
Havens
, and
D.
Klein
, “
Relative velocities, geometry, and expansion of space
,” in
Recent Advances in Cosmology
(
Nova Science Publishers, Inc.
,
2013
); e-print arXiv:gr-qc/1210.3161.
6.
D.
Klein
, “
Maximal Fermi charts and geometry of inationary universes
,”
Ann. Henri Poincare
14
,
1525
-
1550
(
2013
); e-print arXiv:1210.7651.
7.
V. J.
Bolós
, “
A note on the computation of geometrically defined relative velocities
,”
Gen. Relativ. Gravitation
44
(
2
),
391
-
400
(
2012
); e-print arXiv:1109.0131.
8.
V. J.
Bolós
, “
Kinematic relative velocity with respect to stationary observers in Schwarzschild spacetime
,”
J. Geom. Phys.
66
,
18
23
(
2013
); e-print arXiv:1205.0884.
9.
V. J.
Bolós
, “
An algorithm for computing geometric relative velocities through Fermi and observational coordinates
,”
Gen. Relativ. Gravitation
46
,
1623
(
2014
); e-print arXiv:1301.2932.
10.
D.
Klein
and
P.
Collas
, “
General transformation formulas for Fermi-Walker coordinates
,”
Classical Quantum Gravity
25
,
145019
(
2008
); e-print arXiv:0712.3838v4 [gr-qc].
11.
V. J.
Bolós
, “
Lightlike simultaneity, comoving observers, and distances in general relativity
,”
J. Geom. Phys.
56
,
813
829
(
2006
); e-print arXiv:gr-qc/0501085.
12.
D.
Carney
and
W.
Fischler
, “Decelerating cosmologies are de-scramblers,” e-print arXiv:1310.7592 [hep-th].
13.
M. P.
Hobson
,
G. P.
Efstathiou
, and
A. N.
Lasenby
,
General Relativity, an Introduction for Physicists
(
Cambridge University Press
,
Cambridge
,
2006
).
14.
C.
Chicone
and
B.
Mashhoon
, “
Explicit Fermi coordinates and tidal dynamics in de Sitter and Gödel spacetimes
,”
Phys. Rev. D
74
,
064019
(
2006
).
15.
D.
Klein
and
P.
Collas
, “
Exact Fermi coordinates for a class of spacetimes
,”
J. Math. Phys.
51
,
022501
(
2010
); e-print arXiv:math-ph/0912.2779.
16.
V. J.
Bolós
,
V.
Liern
, and
J.
Olivert
, “
Relativistic simultaneity and causality
,”
Int. J. Theor. Phys.
41
,
1007
1018
(
2002
); e-print arXiv:gr-qc/0503034.
17.
M.
Soffel
 et al., “
The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: Explanatory supplement
,”
Astron. J.
126
,
2687
2706
(
2003
); e-print arXiv:astro-ph/0303376.
18.
L.
Lindegren
and
D.
Dravins
, “
The fundamental definition of ‘radial velocity’
,”
Astron. Astrophys.
401
,
1185
1202
(
2003
); e-print arXiv:astro-ph/0302522.
19.
R.
Johnston
 et al., “
Reconstructing the velocity field beyond the local universe
,”
Gen. Relativ. Gravitation
46
,
1812
(
2014
); e-print arXiv:1210.1203.
20.

In Sec. V the symbol t will denote the time coordinate in optical coordinates which is different from the Fermi time coordinate τ. However, these two coordinate times are identical along the path β0 where they are both proper time.

21.

The case α = 1 gives the Milne universe.

You do not currently have access to this content.