Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

1.
T. D.
Newton
and
E. P.
Wigner
,
Rev. Mod. Phys.
21
,
400
(
1949
).
2.
A. S.
Wightman
,
Rev. Mod. Phys.
34
,
845
(
1962
).
3.
D. P. L.
Castrigiano
,
J. Math. Phys.
25
,
1116
(
1984
).
4.
S.
Schlieder
, in
Quanten und Felder
, edited by
H. P.
Dürr
(
Vieweg+Teubner Verlag
,
1971
), pp.
145
160
.
5.
H. J.
Borchers
,
Commun. Math. Phys.
4
,
315
(
1967
).
6.
G. C.
Hegerfeldt
,
Phys. Rev. D
10
,
3320
(
1974
).
7.
G. C.
Hegerfeldt
,
Phys. Rev. Lett.
54
,
2395
(
1985
).
8.
G. C.
Hegerfeldt
,
Irreversibility and Causality Semigroups and Rigged Hilbert Spaces
,
Lecture Notes in Physics
Vol.
504
(
Springer-Verlag
,
Berlin Heidelberg
,
1998
), pp.
238
245
.
9.
G. C.
Hegerfeldt
, in
Extensions of Quantum Theory
, edited by
A.
Horzela
and
E.
Kapuscik
(
Aperion
,
Montreal
,
2001
), pp.
9
16
.
10.
S.
Schlieder
,
Commun. Math. Phys.
13
,
216
(
1969
).
11.
R.
Haag
,
Local Quantum Physics: Fields, Particles, Algebras
,
Texts and Monographs in Physics
(
Springer-Verlag
,
Berlin Heidelberg
,
1992
).
12.
A. J.
Kálnay
, in
Problems in the Foundations of Physics
,
Studies in the Foundations, Methodology and Philosophy of Science
Vol.
4
, edited by
M.
Bunge
(
Springer-Verlag
,
Berlin Heidelberg
,
1971
), pp.
93
110
.
13.
D. P. L.
Castrigiano
and
U.
Mutze
,
Phys. Rev. D
26
,
3499
(
1982
).
14.
S.
Farkas
,
Z.
Kurucz
, and
M.
Weiner
,
Int. J. Theor. Phys.
41
,
79
(
2002
).
15.

By considering the completion of E and the fact that Δt is Lebesgue measurable for every Δ ⊂ ℝ3 (see Ref. 47, 2.6 Lemma) we can solve the problem that one might have Δt ∉ ℬ(ℝ3).

16.
G. W.
Mackey
,
Proc. Natl. Acad. Sci. U. S. A.
35
,
537
(
1949
).
17.
B.
Bakamjian
and
L. H.
Thomas
,
Phys. Rev.
92
,
1300
(
1953
).
18.
19.
20.
A.
Galindo
,
Il Nuovo Cimento Ser. 10
37
,
413
(
1965
).
21.
A. S.
Wightman
and
S. S.
Schweber
,
Phys. Rev.
98
,
812
(
1955
).
22.
W.
Weidlich
and
A. K.
Mitra
,
Il Nuovo Cimento Ser. 10
30
,
385
(
1963
).
23.
S. N. M.
Ruijsenaars
,
Ann. Phys.
137
,
33
(
1981
).
24.
R. E.
Wagner
,
B. T.
Shields
,
M. R.
Ware
,
Q.
Su
, and
R.
Grobe
,
Phys. Rev. A
83
,
062106
(
2011
).
25.
H.
Neumann
,
Commun. Math. Phys.
23
,
100
(
1971
).
26.
H.
Scutaru
,
Lett. Math. Phys.
2
,
101
(
1977
).
27.
D. P. L.
Castrigiano
and
R.
Henrichs
,
Lett. Math. Phys.
4
,
169
(
1980
).
28.
A.
Toigo
, “
Positive operator measures, generalised imprimitivity theorem and their applications
,” Ph.D. Thesis (
2005
); e-print arXiv:math-ph/0505080v1, http://www.ge.infn.it/~gruppo4www/homepage.html.
29.
D. P. L.
Castrigiano
, “
Lokalisierung relativistischer Elementarsysteme
,” Doctoral thesis,
Universität München
,
1976
.
30.
K.
Kraus
, in
The Uncertainty Principle and Foundations of Quantum Mechanics
, edited by
W. C.
Price
and
S. S.
Chissick
(
Wiley
,
1977
), pp.
293
320
.
31.
H.
Neumann
,
Helv. Phys. Acta
45
,
811
(
1972
).
32.
G.
Ludwig
,
Deutung des Begriffs “physikalische Theorie” und axiomatische Grundlegung der Hilbertraumstruktur der Quantenmechanik durch Hauptsätze des Messens
,
Lecture Notes in Physics
Vol.
4
(
Springer-Verlag
,
Berlin Heidelberg
,
1970
).
33.
G.
Ludwig
,
Foundations of Quantum Mechanics I
,
Texts and Monographs in Physics
(
Springer-Verlag
,
1983
).
34.
P.
Busch
,
M.
Grabowski
, and
P. J.
Lahti
,
Operational Quantum Physics
(
Springer-Verlag
,
Berlin Heidelberg
,
1995
).
35.
T.
Heinonen
,
P.
Lahti
, and
K.
Ylinen
,
Rep. Math. Phys.
53
,
425
(
2004
).
36.
S. T.
Ali
and
G. G.
Emch
,
J. Math. Phys.
15
,
176
(
1974
).
37.
P.
Busch
,
J. Phys. A: Math. Gen.
32
,
6535
(
1999
).
38.
G. C.
Hegerfeldt
and
S. N. M.
Ruijsenaars
,
Phys. Rev. D
22
,
377
(
1980
).
39.
B.
Thaller
,
The Dirac Equation
(
Springer-Verlag
,
Berlin Heidelberg
,
1992
).
40.
D. P. L.
Castrigiano
,
Lett. Math. Phys.
5
,
303
(
1981
).
41.
F.
Riesz
and
B.
Szőkefalvi-Nagy
,
Functional Analysis
(
Dover
,
1990
).
42.
A. J.
Bracken
and
G. F.
Melloy
,
J. Phys. A: Math. Gen.
32
,
6127
(
1999
).
43.
A. J.
Bracken
,
J. A.
Flohr
, and
G. F.
Melloy
,
Proc. R. Soc. A
461
,
3633
(
2005
).
44.
G. F.
Melloy
,
Found. Phys.
32
,
503
(
2002
).
45.
N.
Barat
and
J. C.
Kimball
,
Phys. Lett. A
308
,
110
(
2003
).
46.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness
(
Academic Press
,
1975
).
47.
A. D.
Leiseifer
, “
Causal Localizations in Relativistic Quantum Mechanics
,” Doctoral thesis,
Technische Universität München
, München,
2014
.
48.
L. I.
Ronkin
,
Introduction to the Theory of Entire Functions of Several Variables
(
American Mathematical Society
,
1974
).
49.
W.
Rudin
,
Functional Analysis
(
McGraw-Hill
,
1991
).
50.
E. M.
Stein
and
R.
Shakarchi
,
Functional Analysis: Introduction to Further Topics in Analysis
(
Princeton University Press
,
2011
).
51.
K.
Yosida
,
Functional Analysis
(
Springer-Verlag
,
Berlin Heidelberg
,
1965
).
52.
D. P. L.
Castrigiano
and
W.
Rölcke
,
Topological Measures and Weighted Radon Measures
(
Alpha Science Oxford
,
U.K.
,
2008
).
53.
B. Y.
Levin
,
Lectures on Entire Functions
(
American Mathematical Society
,
1996
).
54.
J. B.
Conway
,
Functions of One Complex Variable I
(
Springer-Verlag
,
New York
,
1978
).
55.
F.
Cucker
and
A. G.
Corbalan
,
Am. Math. Mon.
96
,
342
(
1989
).
56.
S.
Sakai
,
C-Algebras andW-Algebras
(
Springer-Verlag
,
New York
,
1971
).
You do not currently have access to this content.