The family algebras are introduced by Kirillov in 2000. In this paper, we study the noncommutative Poisson bracket P on the classical family algebra 𝒞τ(𝔤). We show that P controls the first-order 1-parameter formal deformation from 𝒞τ(𝔤) to 𝒬τ(𝔤) where the latter is the quantum family algebra. Moreover, we will prove that the noncommutative Poisson bracket is in fact a Hochschild 2-coboundary, and therefore, the deformation is infinitesimally trivial. In the last part of this paper, we discuss the relation between Mackey’s analogue and the quantization problem of the family algebras.

1.
Alekseev
,
A.
and
Meinrenken
,
E.
, “
The non-commutative Weil algebra
,”
Invent. Math.
139
(
1
),
135
172
(
2000
).
2.
Block
,
J.
and
Getzler
,
E.
, “
Quantization of foliations
,” in
Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol. 1, 2 (New York, 1991)
(
World Sci. Publ
,
River Edge, NJ
,
1992
), pp.
471
487
.
3.
Calaque
,
D.
and
Rossi
,
C. A.
, “
Lectures on Duflo isomorphisms in Lie algebra and complex geometry
,” in
EMS Series of Lectures in Mathematics
(
European Mathematical Society (EMS)
,
Zürich
,
2011
).
4.
Dolgushev
,
V.
,
Tamarkin
,
D.
, and
Tsygan
,
B.
, “
Formality theorems for Hochschild complexes and their applications
,”
Lett. Math. Phys.
90
(
1-3
),
103
136
(
2009
).
5.
Doubek
,
M.
,
Markl
,
M.
, and
Zima
,
P.
, “
Deformation theory (lecture notes)
,”
Arch. Math.
43
(
5
),
333
371
(
2007
).
6.
Duflo
,
M.
, “
Opérateurs différentiels bi-invariants sur un groupe de Lie
,”
Ann. Sci. École Norm. Sup. (4)
10
(
2
),
265
288
(
1977
).
7.
Fialowski
,
A.
, “
An example of formal deformations of Lie algebras
,” in
Deformation Theory of Algebras and Structures and Applications (Il Ciocco, 1986)
,
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.
Vol.
247
(
Kluwer Acad. Publ
,
Dordrecht
,
1988
), pp.
375
401
.
8.
Gerstenhaber
,
M.
, “
The cohomology structure of an associative ring
,”
Ann. Math.
78
(
2
),
267
288
(
1963
).
9.
Gerstenhaber
,
M.
, “
On the deformation of rings and algebras
,”
Ann. Math.
79
(
2
),
59
103
(
1964
).
10.
Grabowski
,
J.
, “
Abstract Jacobi and Poisson structures. Quantization and star-products
,”
J. Geom. Phys.
9
(
1
),
45
73
(
1992
).
11.
Gutt
,
S.
, “
An explicit *-product on the cotangent bundle of a Lie group
,”
Lett. Math. Phys.
7
(
3
),
249
258
(
1983
).
12.
Higson
,
N.
, “
On the analogy between complex semisimple groups and their Cartan motion groups
,” in
Noncommutative Geometry and Global Analysis
,
Contemp. Math.
Vol.
546
(
Amer. Math. Soc
,
Providence, RI
,
2011
), pp.
137
170
.
13.
Joseph
,
A.
, “
Modules for relative Yangians (family algebras) and Kazhdan-Lusztig polynomials
,”
Transform. Groups
19
(
1
),
105
129
(
2014
).
14.
Kirillov
,
A. A.
, “
Family algebras
,”
Electron. Res. Announc. Am. Math. Soc.
6
,
7
20
electronic (
2000
).
15.
Kirillov
,
A. A.
, “
Introduction to family algebras
,”
Mosc. Math. J.
1
(
1
),
49
63
(
2001
).
16.
Kirillov
,
A. A.
, in
Lectures on the Orbit Method
,
Graduate Studies in Mathematics
(
American Mathematical Society
,
Providence, RI
,
2004
), Vol.
64
.
17.
Knapp
,
A. W.
, “
Lie groups beyond an introduction
,” in
Progress in Mathematics
, 2nd ed. (
Birkhäuser Boston Inc
,
Boston, MA
,
2002
), Vol.
140
.
18.
Kontsevich
,
M.
, “
Deformation quantization of Poisson manifolds
,”
Lett. Math. Phys.
66
(
3
),
157
216
(
2003
).
19.
Laurent-Gengoux
,
C.
,
Pichereau
,
A.
, and
Vanhaecke
,
P.
, “
Poisson structures
,” in
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
(
Springer
,
Heidelberg
,
2013
), Vol.
347
.
20.
Mackey
,
G. W.
, “
On the analogy between semisimple Lie groups and certain related semi-direct product groups
,” in
Lie Groups and Their Representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971)
(
Halsted
,
New York
,
1975
), pp.
339
363
.
21.
Rozhkovskaya
,
N.
, “
Quantum family algebras
,” Ph.D. thesis, University of Pennsylvania,
ProQuest LLC
, Ann Arbor, MI,
2002
.
22.
Tai
,
M.
, “
The classical family algebra of the adjoint representation of sl(n)
,” preprint arXiv:1306.0867 (
2013
).
23.
Weibel
,
C. A.
, “
An introduction to homological algebra
,” in
Cambridge Studies in Advanced Mathematics
(
Cambridge University Press
,
Cambridge
,
1994
), Vol.
38
.
24.
Xu
,
P.
, “
Noncommutative Poisson algebras
,”
Am. J. Math.
116
(
1
),
101
125
(
1994
).
You do not currently have access to this content.