We compute the sum and number of eigenvalues for a certain class of magnetic Schrödinger operators in a domain with boundary. Functions in the domain of the operator satisfy a (magnetic) Robin condition. The calculations are valid in the semi-classical asymptotic limit and the eigenvalues concerned correspond to eigenstates localized near the boundary of the domain. The formulas we derive display the influence of the boundary and the boundary condition and are valid under a weak regularity assumption of the boundary function. Our approach relies on three main points: reduction to the boundary, construction of boundary coherent states, and handling the boundary term as a surface electric potential and controlling the errors by various Lieb-Thirring inequalities.

1.
Bonnaillie
,
V.
, “
Analyse mathématique de la supraconductivité dans un domaine à coins: Méthodes semi-classiques et numériques
,” Thèse de doctorat,
Université Paris 11
,
2003
.
2.
Colin de Verdière
,
Y.
, “
L’asymptotique de Weyl pour les bouteilles magnétique
,”
Commun. Math. Phys.
105
,
327
335
(
1986
).
3.
Cornean
,
H. D.
,
Fournais
,
S.
,
Frank
,
R. L.
, and
Helffer
,
B.
, “
Sharp trace asymptotics for a class of 2D-magnetic operators
,”
Ann. Inst. Fourier
63
(
6
),
2457
2513
(
2013
).
4.
Dauge
,
M.
and
Helffer
,
B.
, “
Eigenvalues variation I, Neumann problem for Sturm-Liouville operators
,”
J. Differ. Equations
104
(
2
),
243
262
(
1993
).
5.
deGennes
,
P. G.
,
Superconductivity of Metals and Alloys
(
Benjamin
,
1966
).
6.
Erdös
,
L.
and
Solovej
,
J. P.
, “
Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates
,”
Commun. Math. Phys.
188
,
599
-
656
(
1997
).
7.
Fournais
,
S.
and
Helffer
,
B.
, “
Spectral methods in surface superconductivity
,” in
Progress in Nonlinear Differential Equations and Their Applications
(
Birkhäuser
,
Boston
,
2010
), Vol.
77
.
8.
Fournais
,
S.
and
Kachmar
,
A.
, “
On the energy of bound states for magnetic Schrödinger operators
,”
J. London Math. Soc.
80
(
1
),
233
255
(
2009
).
9.
Fournais
,
S.
and
Kachmar
,
A.
, “
The ground state energy of the three dimensional Ginzburg-Landau functional. Part I: Bulk regime
,”
Commun. Partial Differ. Equations
38
(
2
),
339
383
(
2013
).
10.
Frank
,
R. L.
, “
On the asymptotic number of edge states for magnetic Schrödinger operators
,”
Pro. London Math. Soc.
95
(
1
),
1
19
(
2007
).
11.
Frank
,
R. L.
and
Geisinger
,
L.
, “
Semi-classical analysis of the Laplalce operator with Robin boundary condition
,”
Bull. Math. Sci.
2
(
2
),
281
319
(
2012
).
12.
Frank
,
R. L.
and
Laptev
,
A.
, “
Spectral inequalities for Schrödinger operators with surface potentials
,” in
Spectral theory of differential operators
,
American Mathematical Society Translations
Vol.
255, Series 2
, edited by
Suslina
,
T.
and
Yafaev
,
D.
(
Providence, RI
,
2008
), pp.
91
102
.
13.
Giorgi
,
T.
and
Smits
,
R.
, “
Eigenvalue estimates and critical temperature in zero fields for enhanced surface superconductivity
,”
Z. Angew. Math. Phys.
58
(
2
),
224
245
(
2007
).
14.
Goffeng
,
M.
,
Kachmar
,
A.
, and
Persson-Sundqvist
,
M.
, “
Clusters of eigenvalues of the magnetic Laplacian with Robin condition
,” preprint arXiv:1406.1020v1.
15.
Helffer
,
B.
and
Kachmar
,
A.
, “
Eigenvalues for the Robin Laplacain in domains with variable curvature
,”
Trans. Am. Math. Soc.
(in press).
16.
Helffer
,
B.
and
Morame
,
A.
, “
Magnetic bottles in connection with superconductivity
,”
J. Funct. Anal.
181
(
2
),
604
-
680
(
2001
).
17.
Helffer
,
B.
and
Pankrashkin
,
K.
, “
Tunneling between corners for Robin Laplacians
,”
J. London Math. Soc.
91
,
225
-
248
(
2015
).
18.
Hundertmark
,
D.
,
Laptev
,
A.
, and
Weidl
,
T.
, “
New bounds on the Lieb-Thirring constants
,”
Invent. Math.
40
,
693
704
(
2000
).
19.
Kachmar
,
A.
, “
On the ground state energy for a magnetic Schrödinger operator and the effect of the de Gennes boundary conditions
,”
C. R. Math.
342
,
701
706
(
2006
).
20.
Kachmar
,
A.
, “
On the ground state energy for a magnetic Schrödinger operator and the effect of the de Gennes boundary conditions
,”
J. Math. Phys.
47
(
7
),
072106
(
2006
).
21.
Kachmar
,
A.
, “
On the stability of normal states for a generalized Ginzburg-Landau model
,”
Asymptot. Anal.
55
(
3-4
),
145
201
(
2007
).
22.
Kachmar
,
A.
, “
On the perfect superconducting solution for a generalized Ginzburg-Landau equation
,”
Asymptot. Anal.
54
(
3-4
),
125
164
(
2007
).
23.
Kachmar
,
A.
, “
Problèmes aux limites issues de la supraconductivité
,” Ph.D. thesis,
University Paris-Sud/ Orsay
,
2007
.
24.
Kachmar
,
A.
, “
Weyl asymptotics for magnetic Schrödinger operator and de Gennes’ boundary condition
,”
Rev. Math. Phys.
20
(
8
),
901
932
(
2008
).
25.
Kachmar
,
A.
and
Khochman
,
A.
, “
Spectral asymptotics for magnetic Schrödinger operators in domains with corners
,”
J. Spectral Theory
3
,
553
574
(
2013
).
26.
Kachmar
,
A.
and
Persson
,
M.
, “
On the essential spectrum of magnetic Schrödinger operators in exterior domains
,”
Arab. J. Math. Sci.
19
(
2
),
217
222
(
2013
).
27.
Laptev
,
A.
and
Weidl
,
T.
, “
Sharp Lieb-Thirring inequalities in high dimensions
,”
Acta Math.
184
(
1
),
87
111
(
2000
).
28.
Levitin
,
M.
and
Parnovski
,
L.
, “
On the principal eigenvalue of a Robin problem with a large parameter
,”
Math. Nachr.
281
,
272
281
(
2008
).
29.
Lieb
,
E. H.
and
Loss
,
M.
,
Analysis
,
Graduate Studies in Mathematics
Vol.
14
, 2nd ed. (
American Mathematical Society
,
Providence, RI
,
2001
).
30.
Lieb
,
E. H.
,
Solovej
,
J. P.
, and
Yngvason
,
J.
, “
Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions
,”
Commun. Math. Phys.
161
(
1
),
77
124
(
1994
).
31.
Nasrallah
,
M.
, “
Energy of surface states for 3D magnetic Schrödinger operators
,”
J. Geom. Anal.
(published online).
32.
Pankrashkin
,
K.
, “
On the asymptotics of the principal eigenvalue problem for a Robin problem with a large parameter in a planar domain
,”
Nanosyst.: Phys., Chem., Math.
4
(
4
),
474
483
(2013); available at http://nanojournal.ifmo.ru/en/articles-2/volume4/4-4/invited-speakers/paper03/.
33.
Pankrashkin
,
K.
and
Popoff
,
N.
, “
Mean curvature bounds and eigenvalues of Robin Laplacians
,”
Calculus Var. Partial Differ. Equations
(published online).
34.
Pankrashkin
,
K.
and
Popoff
,
N.
, “
An effective Hamiltonian for the eigenvalue asymptotics of a Robin Laplacian with a large parameter
,” e-print arXiv:1502.00877v2.
35.
Persson
,
A.
, “
Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator
,”
Math. Scand.
8
,
143
153
(
1960
).
36.
Sobolev
,
A.
, “
On the Lieb-Thirring estimates for the Pauli operator
,”
Duke Math. J.
82
(
3
),
607
635
(
1996
).
37.
Truc
,
F.
, “
Semi-classical asymptotics for magnetic bottles
,”
Asymptot. Anal.
15
(
3-4
),
385
395
(
1997
).
You do not currently have access to this content.