Two-phase solutions of focusing NLS equation are classically constructed out of an appropriate Riemann surface of genus two and expressed in terms of the corresponding theta-function. We show here that in a certain limiting regime, such solutions reduce to some elementary ones called “Solitons on unstable condensate.” This degeneration turns out to be conveniently studied by means of basic tools from the theory of Riemann-Hilbert problems. In particular, no acquaintance with Riemann surfaces and theta-function is required for such analysis.

1.
Belokolos
,
E. D.
,
Bobenko
,
A. I.
,
Enol’ski
,
V. Z.
,
Its
,
A. R.
, and
Matveev
,
V. B.
,
Algebro-Geometric Approach to Nonlinear Integrable Equations
,
Springer Series in Nonlinear Dynamics
(
Springer-Verlag
,
1994
).
2.
Biondini
,
G.
and
Kovačič
,
G.
, “
Inverse scattering transform for the focusing nonlinear Schödinger equation with nonzero boundary conditions
,”
J. Math. Phys.
55
,
031506
(
2014
).
3.
Computational Approach to Riemann Surfaces, Lecture Notes in Mathematics Vol. 2013, edited by A. I. Bobenko and C. Klein (Springer-Verlag, 2011).
4.
Bujalance
,
E.
,
Cirre
,
F. J.
,
Gamboa
,
J. M.
, and
Gromadzki
,
G.
, in
Symmetries of Compact Riemann Surfaces
(
Springer Science & Business Media
,
2010
), Vol.
2007
.
5.
Calini
,
A.
and
Ivey
,
T.
, “
Finite-gap solutions of the vortex filament equation: Genus one solutions and symmetric solutions
,”
J. Nonlinear Sci.
15
,
321
-
361
(
2005
).
6.
Chabchoub
,
A.
,
Vitanov
,
N.
, and
Hoffmann
,
N.
, “
Experimental evidence for breather type dynamics in freak waves
,”
Proc. Appl. Math. Mech.
10
,
495
-
496
(
2010
).
7.
Chiao
,
R. Y.
,
Garmire
,
E.
, and
Townes
,
C. H.
, “
Self-trapping of optical beams
,”
Phys. Rev. Lett.
13
,
479
(
1964
);
Erratum
Chiao
,
R. Y.
,
Garmire
,
E.
, and
Townes
,
C. H.
,
Phys. Rev. Lett.
14
,
1056
(
1965
).
8.
Deift
,
P.
, in
Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach
(
American Mathematical Society
,
2000
), Vol.
3
.
9.
Dubrovin
,
B. A.
, “
Theta functions and non-linear equations
,”
Russ. Math. Surv.
36
(
2
),
11
-
92
(
1981
).
10.
Dubrovin
,
B.
, “
On analytic families of invariant tori for PDEs
,”
Astérisque
297
,
35
-
65
(
2004
).
11.
Dysthe
,
B. K.
and
Trulsen
,
K.
, “
Note on breather type solutions of the NLS as models for freak-waves
,”
Phys. Scr.
T82
,
48
-
52
(
1999
).
12.
Farkas
,
H. M.
and
Kra
,
I.
,
Riemann Surfaces
(
Springer
,
New York
,
1992
).
13.
Fay
,
J.
,
Theta Functions on Riemann Surfaces
,
Lecture Notes in Mathematics
Vol.
352
(
Springer-Verlag
,
1973
).
14.
Fokas
,
A. S.
,
Its
,
A. R.
,
Kapaev
,
A. A.
, and
Novokshenov
,
V. Yu.
, “
Painlevé transcendents. The Riemann–Hilbert approach
,” in
Mathematical Surveys and Monographs
(
AMS
,
2006
), Vol.
128
.
15.
Giavedoni
,
P.
, “
Period matrices of real Riemann surfaces and fundamental domains
,”
SIGMA
9
,
062
(
2013
).
16.
Giavedoni
,
P.
, “
Topics on the two-phase solutions of the focusing nonlinear Schrödinger equation
,” Ph.D. thesis (
2012
).
17.
Its
,
A. R.
and
Kotlyarov
,
V. P.
, “
Explicit expressions for the solutions of nonlinear Schrödinger equation
,”
Dockl. Akad. Nauk. SSSR, S. A
965
,
11
(
1976
).
18.
Jimbo
,
M.
,
Miwa
,
T.
, and
Ueno
,
K.
, “
Monodromy preserving deformations of linear ordinary differential equations with rational coefficients (I)
,”
Physica D
2
,
306
-
352
(
1981
).
19.
Korotkin
,
D.
, “
Solution of an arbitrary matrix Riemann-Hilbert problem with quasi-permutation monodromy matrices
,”
Math. Ann.
329
(
2
),
335
-
364
(
2004
).
20.
Ohta
,
Y.
and
Yang
,
J.
, “
General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation
,”
Proc. R. Soc. A
468
,
1716
-
1740
(
2012
).
21.
Rogers
,
C.
and
Schief
,
W. K.
, “
Bcklund and Darboux transformations. Geometry and modern applications in soliton theory
,” in
Cambridge Texts in Applied Mathematics
(
Cambridge University Press
,
Cambridge
,
2002
).
22.
Zakharov
,
V. E.
, “
Collapse of Langmuir waves
,”
Sov. Phys. JETP
35
,
908
-
914
(
1972
).
23.
Zakharov
,
V. E.
and
Shabat
,
A. B.
, “
Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media
,”
Sov. Phys. JETP
34
,
62
-
69
(
1972
).
24.
Zakharov
,
V. E.
and
Gelash
,
A. A.
, “
Soliton on unstable condensate
,” e-print arXiv:1109.0620 (2011).
25.
Zakharov
,
V. E.
, “
Stability of periodic waves of finite amplitude on the surface of a deep fluid
,”
J. Appl. Mech. Tech. Phys.
9
,
190
-
194
(
1968
).
You do not currently have access to this content.