We study a symmetric generalization p k ( N ) ( η , α ) of the binomial distribution recently introduced by Bergeron et al., where η ∈ [0, 1] denotes the win probability and α is a positive parameter. This generalization is based on q-exponential generating functions ( e q gen z [ 1 + ( 1 q gen ) z ] 1 / ( 1 q gen ) ; e 1 z = e z ) where qgen = 1 + 1/α. The numerical calculation of the probability distribution function of the number of wins k, related to the number of realizations N, strongly approaches a discrete qdisc-Gaussian distribution, for win-loss equiprobability (i.e., η = 1/2) and all values of α. Asymptotic N → ∞ distribution is in fact a qatt-Gaussian e q att β z 2 , where qatt = 1 − 2/(α − 2) and β = (2α − 4). The behavior of the scaled quantity k/Nγ is discussed as well. For γ < 1, a large-deviation-like property showing a qldl-exponential decay is found, where qldl = 1 + 1/(ηα). For η = 1/2, qldl and qatt are related through 1/(qldl − 1) + 1/(qatt − 1) = 1, ∀α. For γ = 1, the law of large numbers is violated, and we consistently study the large-deviations with respect to the probability of the N → ∞ limit distribution, yielding a power law, although not exactly a qLD-exponential decay. All q-statistical parameters which emerge are univocally defined by (η, α). Finally, we discuss the analytical connection with the Pólya urn problem.

1.
V. V.
Dodonov
,
J. Opt. B: Quantum Semiclassical Opt.
4
(
1
),
R1
-
R33
(
2002
), and references therein.
2.
J.-P.
Gazeau
,
Coherent States in Quantum Physics
(
Wiley-VCH
,
2009
).
3.
R. L.
de Matos Filho
and
W.
Vogel
,
Phys Rev. A
54
,
4560
(
1996
).
4.
Z.
Kis
,
W.
Vogel
, and
L.
Davidovich
,
Phys Rev. A
64
(
3
),
033401
(
2001
).
5.
E. M. F.
Curado
,
J. P.
Gazeau
, and
L. M. C. S.
Rodrigues
,
Phys. Scr.
82
,
038108
(
2010
).
6.
H.
Bergeron
,
E. M. F.
Curado
,
J. P.
Gazeau
, and
L. M. C. S.
Rodrigues
,
J. Math. Phys.
53
,
103304
(
2012
).
7.
H.
Bergeron
,
E. M. F.
Curado
,
J. P.
Gazeau
, and
Ligia M. C. S.
Rodrigues
,
J. Math. Phys.
54
,
123301
(
2013
).
8.
C.
Tsallis
,
M.
Gell-Mann
, and
Y.
Sato
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
15377
(
2005
).
9.
C.
Tsallis
,
J. Stat. Phys.
52
,
479
(
1988
).
10.
C.
Tsallis
,
Introduction to Nonextensive Statistical Mechanics - Approaching a Complex World
(
Springer
,
New York
,
2009
).
11.
S.
Umarov
,
C.
Tsallis
,
M.
Gell-Mann
, and
S.
Steinberg
,
J. Math. Phys.
51
,
033502
(
2010
).
12.
A.
Rodriguez
and
C.
Tsallis
,
J. Stat. Mech.: Theory Exp.
2014
,
P12027
.
13.
S.
Umarov
and
C.
Tsallis
,
AIP Conf. Proc.
965
,
34
-
42
(
2007
).
14.
D.
Prato
and
C.
Tsallis
,
Phys. Rev. E
60
,
2398
(
1999
).
15.
R.
Hanel
,
S.
Thurner
, and
C.
Tsallis
,
Eur. Phys. J. B
72
,
263
(
2009
).
16.
A.
Rodriguez
and
C.
Tsallis
,
J. Math. Phys.
53
,
023302
(
2012
).
17.
18.
H.
Bergeron
,
E. M. F.
Curado
,
J. P.
Gazeau
, and
L. M. C. S.
Rodrigues
, preprint arXiv:1412.0581 [cond-mat.stat-mech] (2014).
21.
See http://www.encyclopediaofmath.org/ for Pólya distribution, Encyclopedia of Mathematics.
22.
T. D.
Frank
,
Nonlinear Fokker-Planck Equations: Fundamentals and Applications
(
Springer
,
Berlin - New York
,
2005
).
23.
G.
Ruiz
and
C.
Tsallis
,
Phys. Lett. A
377
,
491
(
2013
).
24.
M.
Jauregui
and
C.
Tsallis
,
J. Math. Phys.
56
,
023303
(
2015
).
You do not currently have access to this content.