We present a method for generating exact interior solutions of Einstein’s equations in the case of static and axially symmetric perfect-fluid spacetimes. The method is based upon a transformation that involves the metric functions as well as the density and pressure of the seed solution. In the limiting vacuum case, it reduces to the Zipoy-Voorhees transformation that can be used to generate metrics with multipole moments. All the metric functions of the new solution can be calculated explicitly from the seed solution in a simple manner. The physical properties of the resulting new solutions are shown to be completely different from those of the seed solution.

1.
R. P.
Kerr
,
Phys. Rev. Lett.
11
,
237
(
1963
).
2.
H.
Stephani
,
D.
Kramer
,
M. A. H.
MacCallum
,
C.
Hoenselaers
, and
E.
Herlt
,
Exact Solutions of Einstein’s Field Equations
(
Cambridge University Press
,
Cambridge, UK
,
2003
).
4.
S.
Rahman
and
M.
Visser
,
Classical Quantum Gravity
19
,
935
(
2002
).
5.
L.
Herrera
,
J.
Ospino
, and
A.
Di Prisco
,
Phys. Rev. D
77
,
027502
(
2008
).
6.
7.
N.
Stergioulas
,
Living Rev. Relativ.
6
,
3
(
2003
).
8.
D. M.
Zipoy
,
J. Math. Phys.
7
,
1137
(
1966
).
9.
B.
Voorhees
,
Phys. Rev. D
2
,
2119
(
1970
).
10.
S.
Parnovsky
,
Zh. Eksp. Teor. Fiz.
88
,
1921
(
1985
)
[
S.
Parnovsky
JETP
61
,
1139
(
1985
)].
11.
D.
Papadopoulos
,
B.
Stewart
, and
L.
Witten
,
Phys. Rev. D
24
,
320
(
1981
).
12.
L.
Herrera
and
J. L.
Hernandez-Pastora
,
J. Math. Phys.
41
,
7544
(
2000
).
13.
L.
Herrera
,
G.
Magli
, and
D.
Malafarina
,
Gen. Relativ. Gravitation
37
,
1371
(
2005
).
14.
N.
Dadhich
and
G.
Date
On a Peculiar Family of Static, Axisymmetric, Vacuum Solutions of the Einstein Equations,
” (2000); e-print arXiv:gr-qc/0012093.
15.
H.
Kodama
and
W.
Hikida
,
Classical Quantum Gravity
20
,
5121
(
2003
).
16.
D.
Malafarina
,
Conf. Proc. C
0405132
,
273
(
2004
).
17.
H.
Quevedo
,
Int. J. Mod. Phys.
20
,
1779
(
2011
).
18.
H. D.
Wahlquist
,
Phys. Rev.
172
,
1291
(
1968
).
19.
20.
D.
Kramer
,
Classical Quantum Gravity
1
,
L3
(
1984
).
21.
J. M. M.
Senovilla
,
Classical Quantum Gravity
4
,
L115
(
1987
).
22.
M.
Mars
and
J. M. M.
Senovilla
,
Phys. Rev. D
54
,
6166
(
1996
).
23.
L.
Herrera
and
J.
Jiménez
,
J. Math. Phys.
23
,
2339
(
1982
).
24.
S.
Drake
and
R.
Turolla
,
Classical Quantum Gravity
14
,
1883
(
1997
).
25.
N.
Ibohal
,
Gen. Relativ. Gravitation
37
,
19
(
2005
).
26.
T.
Papakostas
,
J. Phys.: Conf. Ser.
8
,
22
(
2005
).
27.
T.
Papakostas
,
J. Phys.: Conf. Ser.
189
,
012027
(
2009
).
28.
S.
Viaggiu
,
Int. J. Mod. Phys. D
15
,
1441
(
2006
).
29.
S.
Viaggiu
,
Int. J. Mod. Phys. D
19
,
1783
(
2010
).
30.
K.
Rosquist
,
Classical Quantum Gravity
16
,
1755
(
1999
).
31.
C.
Lozanovski
and
L.
Wylleman
,
Classical Quantum Gravity
28
,
075015
(
2011
).
32.
R.
Ferraro
,
Gen. Relativ. Gravitation
46
,
1705
(
2014
).
33.
G.
Lessner
,
Gen. Relativ. Gravitation
40
,
2177
(
2008
).
34.
L.
Modesto
and
P.
Nicolini
,
Phys. Rev. D
82
,
104035
(
2010
).
35.
Y.
Miao
,
Z.
Xue
, and
S.
Zhang
,
Int. J. Mod. Phys. D
21
,
1250017
(
2012
).
36.
F.
Caravelli
and
L.
Modesto
,
Classical Quantum Gravity
27
,
245022
(
2010
).
37.
M.
Azrag-Ainou
,
Eur. Phys. J. C
74
,
2865
(
2014
).
38.
M.
Azrag-Ainou
,
Phys. Rev. D
90
,
064041
(
2014
).
39.
A.
Larranaga
,
A.
Cardenas-Avendano
, and
D.
Torres
,
Phys. Lett. B
743
,
492
(
2015
).
40.
H.
Erbin
,
Gen. Relativ. Gravitation
47
,
19
(
2015
).
41.
L.
Herrera
,
A.
Di Prisco
,
J.
Ibáñez
, and
J.
Ospino
,
Phys. Rev. D
87
,
024014
(
2013
).
42.
S.
Toktarbay
and
H.
Quevedo
,
Gravitation Cosmol.
20
,
252
(
2014
).
43.
M.
Masood-ul-Alama
,
Gen. Relativ. Gravitation
39
,
55
(
2007
).
You do not currently have access to this content.