We study a class of quantum spin systems that include the S = 1 2 Heisenberg and XY-models and prove that two-point correlations exhibit exponential decay in the presence of a transverse magnetic field. The field is not necessarily constant, it may be random, and it points in the same direction. Our proof is entirely probabilistic and it relies on a random loop representations of the correlation functions, on stochastic domination and on first-passage percolation.

1.
M.
Aizenman
and
B.
Nachtergaele
, “
Geometric aspects of quantum spin states
,”
Commun. Math. Phys.
164
,
17
63
(
1994
).
2.
J.
van den Berg
and
H.
Kesten
, “
Inequalities with applications to percolation and reliability
,”
J. Appl. Probab.
22
,
556
569
(
1985
).
3.
J.
Björnberg
, “
Infrared bound and mean-field behaviour in the quantum Ising model
,”
Commun. Math. Phys.
323
(
2
),
329
366
(
2013
).
4.
J.
Björnberg
, “
Vanishing critical magnetization in the quantum Ising model
,”
Commun. Math. Phys.
(published online).
5.
J.
Björnberg
and
G.
Grimmett
, “
The phase transition in the quantum Ising model is sharp
,”
J. Stat. Phys.
136
(
2
),
231
273
(
2009
).
6.
N.
Crawford
and
D.
Ioffe
, “
Random current representation for transverse field Ising model
,”
Commun. Math. Phys.
296
(
2
),
447
474
(
2010
).
7.
N.
Crawford
,
S.
Ng
, and
S.
Starr
, “
Emptiness formation probability
,” e-print arXiv:1410.3928.
8.
J.
Fröhlich
and
P.-F.
Rodriguez
, “
Some applications of the Lee-Yang theorem
,”
J. Math. Phys.
53
,
095218
(
2012
).
9.
H.-O.
Georgii
and
T.
Küneth
, “
Stochastic comparison of point random fields
,”
J. Appl. Probab.
34
,
868
881
(
1997
).
10.
C.
Goldschmidt
,
D.
Ueltschi
, and
P.
Windridge
, “
Quantum Heisenberg models and their probabilistic representations
,”
Entropy and the Quantum II
,
Contemporary Mathematics
(
AMS
,
2011
), pp.
177
224
.
11.
G. R.
Grimmett
and
H.
Kesten
, “
First-passage percolation, network flows, and electrical resistances
,”
Z. Wahrsch. Verw. Geb.
66
,
335
366
(
1984
).
12.
G. R.
Grimmett
,
Percolation
(
Springer
,
Berlin
,
2010
).
13.
H.
Kesten
, “
Aspects of first passage percolation
,”
Lect. Notes Math.
1180
,
125
264
(
1986
).
14.
J. L.
Lebowitz
and
O.
Penrose
, “
On the exponential decay of correlations
,”
Commun. Math. Phys.
39
,
165
184
(
1974
).
15.
T. M.
Liggett
,
R. H.
Schonmann
, and
A. M.
Stacey
, “
Domination by product measures
,”
Ann. Probab.
25
,
71
95
(
1997
).
16.
C.-É.
Pfister
, “
Analyticity properties of the correlation functions for the anisotropic Heisenberg model
,”
Commun. Math. Phys.
41
,
109
117
(
1975
).
17.
C.
Preston
, “
Spatial birth-and-death processes
,”
Bull. Int. Stat. Inst.
46
,
371
390
(
1975
).
18.
B.
Tóth
, “
Improved lower bound on the thermodynamic pressure of the spin 1/2 Heisenberg ferromagnet
,”
Lett. Math. Phys.
28
,
75
84
(
1993
).
19.
D.
Ueltschi
, “
Random loop representations for quantum spin systems
,”
J. Math. Phys.
54
,
083301
(
2013
).
You do not currently have access to this content.