We study a class of quantum spin systems that include the Heisenberg and XY-models and prove that two-point correlations exhibit exponential decay in the presence of a transverse magnetic field. The field is not necessarily constant, it may be random, and it points in the same direction. Our proof is entirely probabilistic and it relies on a random loop representations of the correlation functions, on stochastic domination and on first-passage percolation.
REFERENCES
1.
M.
Aizenman
and B.
Nachtergaele
, “Geometric aspects of quantum spin states
,” Commun. Math. Phys.
164
, 17
–63
(1994
).2.
J.
van den Berg
and H.
Kesten
, “Inequalities with applications to percolation and reliability
,” J. Appl. Probab.
22
, 556
–569
(1985
).3.
J.
Björnberg
, “Infrared bound and mean-field behaviour in the quantum Ising model
,” Commun. Math. Phys.
323
(2
), 329
–366
(2013
).4.
J.
Björnberg
, “Vanishing critical magnetization in the quantum Ising model
,” Commun. Math. Phys.
(published online).5.
J.
Björnberg
and G.
Grimmett
, “The phase transition in the quantum Ising model is sharp
,” J. Stat. Phys.
136
(2
), 231
–273
(2009
).6.
N.
Crawford
and D.
Ioffe
, “Random current representation for transverse field Ising model
,” Commun. Math. Phys.
296
(2
), 447
–474
(2010
).7.
8.
J.
Fröhlich
and P.-F.
Rodriguez
, “Some applications of the Lee-Yang theorem
,” J. Math. Phys.
53
, 095218
(2012
).9.
H.-O.
Georgii
and T.
Küneth
, “Stochastic comparison of point random fields
,” J. Appl. Probab.
34
, 868
–881
(1997
).10.
C.
Goldschmidt
, D.
Ueltschi
, and P.
Windridge
, “Quantum Heisenberg models and their probabilistic representations
,” Entropy and the Quantum II
, Contemporary Mathematics
(AMS
, 2011
), pp. 177
–224
.11.
G. R.
Grimmett
and H.
Kesten
, “First-passage percolation, network flows, and electrical resistances
,” Z. Wahrsch. Verw. Geb.
66
, 335
–366
(1984
).12.
13.
H.
Kesten
, “Aspects of first passage percolation
,” Lect. Notes Math.
1180
, 125
–264
(1986
).14.
J. L.
Lebowitz
and O.
Penrose
, “On the exponential decay of correlations
,” Commun. Math. Phys.
39
, 165
–184
(1974
).15.
T. M.
Liggett
, R. H.
Schonmann
, and A. M.
Stacey
, “Domination by product measures
,” Ann. Probab.
25
, 71
–95
(1997
).16.
C.-É.
Pfister
, “Analyticity properties of the correlation functions for the anisotropic Heisenberg model
,” Commun. Math. Phys.
41
, 109
–117
(1975
).17.
C.
Preston
, “Spatial birth-and-death processes
,” Bull. Int. Stat. Inst.
46
, 371
–390
(1975
).18.
B.
Tóth
, “Improved lower bound on the thermodynamic pressure of the spin 1/2 Heisenberg ferromagnet
,” Lett. Math. Phys.
28
, 75
–84
(1993
).19.
D.
Ueltschi
, “Random loop representations for quantum spin systems
,” J. Math. Phys.
54
, 083301
(2013
).© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.