Using the technique of classical r-matrices and quantum Lax operators, we construct the most general form of the quantum integrable “n-level, many-mode” spin-boson Jaynes-Cummings-Dicke-type hamiltonians describing an interaction of a molecule of N n-level atoms with many modes of electromagnetic field and containing, in general, additional non-linear interaction terms. We explicitly obtain the corresponding quantum Lax operators and spin-boson analogs of the generalized Gaudin hamiltonians and prove their quantum commutativity. We investigate symmetries of the obtained models that are associated with the geometric symmetries of the classical r-matrices and construct the corresponding algebra of quantum integrals. We consider in detail three classes of non-skew-symmetric classical r-matrices with spectral parameters and explicitly obtain the corresponding quantum Lax operators and Jaynes-Cummings-Dicke-type hamiltonians depending on the considered r-matrix.

1.
W.
Heitler
,
The Quantum Theory of Radiation
(
Oxford
,
New York
,
1954
).
2.
N.
Allen
and
J.
Eberly
,
Optical Resonance and Two-Level Atoms
(
Willey-Interscience Publication
,
New York
,
1975
).
3.
E.
Jaynes
and
F.
Cummings
,
Proc. IEEE
51
,
89
(
1963
).
5.
M.
Gaudin
,
La fonction d’Onde de Bethe
(
Maison
,
Paris
,
1983
).
6.
B.
Jurco
,
J. Math. Phys.
30
,
1739
(
1989
).
7.
N.
Bogoliubov
, Jr.
,
F.
Kien
, and
A.
Shumovsky
,
Phys. Lett. A
101
,
201
(
1984
).
8.
X.
Li
and
N.
Bei
,
Phys. Lett. A
101
,
1087
(
1984
).
9.
10.
11.
A.
Abdel-Hafez
,
A.
Obada
, and
M.
Ahmad
,
Phys. Rev. A
35
,
1634
(
1987
).
12.
V.
Dodonov
,
V.
Manko
, and
S.
Chumakov
,
Trudy Fiz. Inst. im. Lebedeva
176
,
57
-
95
(
1986
).
13.
V.
Inozemtsev
and
N.
Inozemtseva
,
Sigma
2
,
069
(
2006
).
14.
M. J.
Werner
and
H.
Risken
,
Phys. Rev. A
44
,
4623
(
1991
).
15.
B.
Deb
,
S.
Ray
, and
H.
Risken
,
Phys. Rev. A
48
,
3191
(
1993
).
16.
N. M.
Bogolyubov
,
R. K.
Bullough
, and
J.
Timonen
,
J. Phys. A
29
,
6305
-
6312
(
1996
).
17.
E.
Sklyanin
, preprint LOMI E3-79, 1979.
18.
P. P.
Kulish
and
E. K.
Skljanin
,
Zap. Nauchn. Sem. LOMI
95
,
129
-
160
(
1980
).
19.
A.
Belavin
and
V.
Drienfield
,
Funct. Anal. Appl.
16
(
3
),
1
(
1982
).
20.
L.
Tahdadjan
and
L.
Faddeev
,
Hamiltonian Approach in the Theory of Solitons
(
Nauka
,
Moscow
,
1986
).
21.
T.
Skrypnyk
,
Phys. Lett. A
334
(
5-6
),
390
(
2005
);
T.
Skrypnyk
,
Phys. Lett. A
347
(
4-6
),
266
(
2005
).
22.
T.
Skrypnyk
,
J. Geom. Phys.
56
(
12
),
53
(
2006
).
23.
T.
Skrypnyk
,
J. Phys. A
40
,
13337
-
13352
(
2007
).
24.
T.
Skrypnyk
,
J. Math. Phys.
48
(
2
),
023506
(
2007
).
25.
T.
Skrypnyk
,
J. Phys. A: Math. Theor.
41
,
475202
(
2008
).
26.
T.
Skrypnyk
,
J. Math. Phys.
50
,
103523
(
2009
).
27.
T.
Skrypnyk
,
J. Phys. A: Math. Theor.
43
,
205205
(
2010
).
28.
T.
Skrypnyk
,
J. Geom. Phys.
60
(
3
),
491
-
500
(
2010
).
29.
T.
Skrypnyk
,
J. Stat. Mech.: Theory Exp.
2011
,
P10009
.
30.
31.
L.
Fadeev
,
N.
Reshetikhin
, and
L.
Tahtadjan
,
Algebra Anal.
1
(
1
),
178
(
1986
).
32.
L.
Fadeev
,
How Algebraic Bethe Ansatz Works for Integrable Models
,
Les-Houches Lectures,
p.
59
, e-print arXiv:hep-th/9605187.
33.
E.
Sklyanin
,
Quantum Group and Quantum Integrable Systems
,
Nankai Lectures Math. Phys.
(
World Sci. Publ
,
River Edge, NJ
,
1992
), pp.
63
-
97
.
34.
V.
Chari
and
A.
Prisley
,
A Guide to Quantum Groups
(
Cambridge University Press
,
Cambridge
,
1994
).
35.
T.
Holstein
and
H.
Primakoff
,
Phys. Rev.
58
,
1098
(
1940
).
36.
S.
Helgason
,
Differential Geometry and Symmetric Spaces
(
Academic Press
,
New-York and London
,
1962
).
37.
J. M.
Maillet
,
Phys. Lett. B
167
,
401
(
1986
).
38.
O.
Babelon
and
C.
Viallet
,
Phys. Lett. B
237
,
411
(
1990
).
39.
J.
Avan
and
M.
Talon
,
Phys. Lett. B
241
,
77
(
1990
).
40.
D.
Talalaev
, “
Quantization of the Gaudin system
,”
Funct. Anal. Appl.
40
(
1
),
73
-
77
(
2006
); e-print arXiv:hep-th/0404153.
41.
S.
Okubo
,
J. Math. Phys.
16
(
3
),
528
-
535
(
1975
).
You do not currently have access to this content.