The Burghelea-Friedlander-Kappeler (BFK)-gluing formula for the regularized zeta-determinants of Laplacians contains a constant which is expressed by the constant term in the asymptotic expansion of the regularized zeta-determinants of a one-parameter family of the Dirichlet-to-Neumann operators. When the dimension of a cutting hypersurface is odd or the metric is a product one near a cutting hypersurface, this constant is well known. In this paper, we discuss this constant in two cases: one is when a warped product metric is given near a cutting hypersurface, and the other is when a manifold is a product manifold. Especially in the first case, we use the result of Fucci and Kirsten [Commun. Math. Phys. 317, 635-665 (2013)] in which the regularized zeta-determinant of the Laplacian defined on a warped product manifold is computed.

1.
Aldana
,
C.
, “
Isoresonant conformal surfaces with cusps and boundedness of the relative determinant
,”
Commun. Anal. Geom.
18
(
5
),
1009
-
1048
(
2010
).
2.
Aldana
,
C.
, “
Asymptotics of relative heat traces and determinants on open surfaces of finite area
,”
Ann. Global Anal. Geom.
44
(
2
),
169
-
216
(
2013
).
3.
Bender
,
C.
,
Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory
(
Springer
,
New York
,
2010
).
4.
Burghelea
,
D.
,
Friedlander
,
L.
, and
Kappeler
,
T.
, “
Mayer-Vietoris type formula for determinants of elliptic differential operators
,”
J. Funct. Anal.
107
,
34
-
66
(
1992
).
5.
Carron
,
G.
, “
Déterminant relatif et fonction Xi
,”
Am. J. Math.
124
,
307
-
352
(
2002
).
6.
Elizalde
,
E.
,
Ten Physical Applications of Spectral Zeta Functions
,
Lecture Notes in Physics m35
(
Springer-Verlag
,
Berlin
,
1995
).
7.
Furutani
,
K.
and
Gosson
,
S.
, “
Determinant of Laplacians on Heisenberg manifolds
,”
J. Geom. Phys.
48
,
438
-
479
(
2003
).
8.
Fucci
,
G.
and
Kirsten
,
K.
, “
The spectral zeta function for Laplace operators on warped product manifolds of type I×fN
,”
Commun. Math. Phys.
317
,
635
-
665
(
2013
).
9.
Gilkey
,
P. B.
,
Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem
, 2nd ed. (
CRC Press, Inc.
,
1994
).
10.
Guillopé
,
L.
, “
Théorie spectrale de quelques variété á bouts
,”
Ann. Sci. École Norm. Sup.
22
(
4
),
137
-
160
(
1989
).
11.
Jorgensen
,
J.
and
Rundelius
,
R.
, “
Continuity of relative hyperbolic spectral theory through metric degeneration
,”
Duke Math. J.
84
,
47
-
81
(
1996
).
12.
Kirsten
,
K.
,
Spectral Functions in Mathematics and Physics
(
Chapman&Hall/CRC
,
Boca Raton, FL
,
2002
).
13.
Lee
,
Y.
, “
Mayer-Vietoris formula for the determinant of a Laplace operator on an even-dimensional manifold
,”
Proc. Am. Math. Soc.
123
(
6
),
1933
-
1940
(
1995
).
14.
Lee
,
Y.
, “
Burghelea-Friedlander-Kappeler’s gluing formula for the zeta determinant and its applications to the adiabatic decompositions of the zeta-determinant and the analytic torsion
,”
Trans. Am. Math. Soc.
355
(
10
),
4093
-
4110
(
2003
).
15.
Lee
,
Y.
, “
The BFK-gluing formula for the zeta-determinants and the value of the relative zeta functions at zero
,”
J. Korean Math. Soc.
45
(
5
),
1255
-
1274
(
2008
).
16.
Loya
,
P.
and
Park
,
J.
, “
Decomposition of the ζ-determinant for the Laplacian on manifolds with cylindrical end
,”
Illinois. J. Math.
48
,
1279
-
1303
(
2004
).
17.
Lundelius
,
R.
, “
Asymptotics of the determinant of the Laplacian on hyperbolic surfaces of finite volume
,”
Duke. Math. J.
71
,
211
-
242
(
1993
).
18.
Miller
,
P. D.
,
Applied Asymptotic Analysis
(
American Mathematical Society
,
Providence, Rhode Island
,
2006
).
19.
Müller
,
W.
, “
Eta invariants and manifolds with boundary
,”
J. Diff. Geom.
40
,
311
-
377
(
1994
).
20.
Müller
,
W.
, “
Relative zeta functions, relative determinants, and scattering theory
,”
Commun. Math. Phys.
192
,
309
-
347
(
1998
).
21.
Müller
,
J.
and
Müller
,
W.
, “
Regularized determinants of Laplace type operators, analytic surgery and relative determinants
,”
Duke. Math. J.
133
,
259
-
312
(
2006
).
22.
Park
,
J.
and
Wojciechowski
,
K.
, “
Adiabetic decomposition of the zeta-determinant and Dirichlet to Neumann operator
,”
J. Geom. Phys.
55
(
3
),
241
-
266
(
2005
).
23.
Park
,
J.
and
Wojciechowski
,
K.
, “
Agranovich-Dynin formula for the zeta-determinants of the Neumann and Dirichlet problems
,”
Contemp. Math.
366
,
109
-
121
(
2005
).
24.
Ray
,
D. B.
and
Singer
,
I. M.
, “
R-torsion and the Laplacian on Riemannian manifolds
,”
Adv. Math.
7
,
145
-
210
(
1971
).
25.
Shubin
,
M. A.
,
Pseudodifferential Operators and Spectral Theory
(
Springer-Verlag
,
1987
).
26.
Voros
,
A.
, “
Spectral function, special functions and Selberg zeta function
,”
Commun. Math. Phys.
110
,
439
-
465
(
1987
).
You do not currently have access to this content.