We study the nodal count of the so-called bi-dendral graphs and show that it exhibits an anomaly: the nodal surplus is never equal to 0 or β, the first Betti number of the graph. According to the nodal-magnetic theorem, this means that bands of the magnetic spectrum (dispersion relation) of such graphs do not have maxima or minima at the “usual” symmetry points of the fundamental domain of the reciprocal space of magnetic parameters. In search of the missing extrema, we prove a necessary condition for a smooth critical point to happen inside the reciprocal fundamental domain. Using this condition, we identify the extrema as the singularities in the dispersion relation of the maximal Abelian cover of the graph (the honeycomb graph being an important example). In particular, our results show that the anomalous nodal count is an indication of the presence of conical points in the dispersion relation of the maximal universal cover. We also discover that the conical points are present in the dispersion relation of graphs with much less symmetry than was required in previous investigations.

1.
Arnold
,
V. I.
,
Mathematical Methods of Classical Mechanics
(
Springer-Verlag
,
New York
,
1978
)
[Translated from the Russian by
Vogtmann
,
K.
and
Weinstein
,
A.
,
Graduate Texts in Mathematics
60
. MR MR0690288 (57 #14033b)].
2.
Band
,
R.
, “
The nodal count {0, 1, 2, 3, …} implies the graph is a tree
,”
Philos. Trans. R. Soc., A
372
(
2007
),
20120504
(
2014
); preprint arXiv:1212.6710.
3.
Band
,
R.
and
Berkolaiko
,
G.
, “
Universality of the momentum band density of periodic networks
,”
Phys. Rev. Lett.
111
,
130404
(
2013
).
4.
Band
,
R.
,
Berkolaiko
,
G.
,
Raz
,
H.
, and
Smilansky
,
U.
, “
The number of nodal domains on quantum graphs as a stability index of graph partitions
,”
Commun. Math. Phys.
311
(
3
),
815
838
(
2012
).
5.
Band
,
R.
,
Berkolaiko
,
G.
, and
Smilansky
,
U.
, “
Dynamics of nodal points and the nodal count on a family of quantum graphs
,”
Ann. Henri Poincare
13
(
1
),
145
184
(
2012
).
6.
Band
,
R.
,
Oren
,
I.
, and
Smilansky
,
U.
, “
Nodal domains on graphs—How to count them and why?
,” in
Analysis on Graphs and Its Applications
,
Proceedings of Symposia in Pure Mathematics
(
American Mathematical Society
,
Providence, RI
,
2008
), Vol.
77
, pp.
5
27
. MR MR2459862.
7.
Berkolaiko
,
G.
, “
A lower bound for nodal count on discrete and metric graphs
,”
Commun. Math. Phys.
278
(
3
),
803
819
(
2008
).
8.
Berkolaiko
,
G.
, “
Nodal count of graph eigenfunctions via magnetic perturbation
,”
Anal. PDE
6
,
1213
1233
(
2013
); preprint arXiv:1110.5373.
9.
Berkolaiko
,
G.
and
Comech
,
A.
, “
Symmetry and Dirac points in graphene spectrum
,” preprint arXiv:1412.8096 (
2014
).
10.
Berkolaiko
,
G.
and
Kuchment
,
P.
, “
Dependence of the spectrum of a quantum graph on vertex conditions and edge lengths
,” in
Spectral Geometry
,
Proceedings of Symposia in Pure Mathematics
(
American Mathematical Society
,
2012
), Vol.
84
; preprint arXiv:1008.0369.
11.
Berkolaiko
,
G.
and
Kuchment
,
P.
,
Introduction to Quantum Graphs
,
Mathematical Surveys and Monographs
Vol.
186
(
American Mathematical Society
,
2013
).
12.
Berkolaiko
,
G.
and
Liu
,
W.
, “
Genericity of eigenpairs of a quantum graph
” (unpublished).
13.
Berkolaiko
,
G.
and
Weyand
,
T.
, “
Stability of eigenvalues of quantum graphs with respect to magnetic perturbation and the nodal count of the eigenfunctions
,”
Philos. Trans. R. Soc., A
372
,
20120522
(
2013
); preprint arXiv:1212.4475.
14.
Bıyıkoğlu
,
T.
,
Leydold
,
J.
, and
Stadler
,
P. F.
,
Laplacian Eigenvectors of Graphs
,
Lecture Notes in Mathematics
Vol.
1915
(
Springer
,
Berlin
,
2007
).
15.
Castro Neto
,
A. H.
,
Guinea
,
F.
,
Peres
,
N. M. R.
,
Novoselov
,
K. S.
, and
Geim
,
A. K.
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
162
(
2009
).
16.
Colin de Verdière
,
Y.
,
Spectres de Graphes
,
Cours Spécialisés [Specialized Courses]
Vol.
4
(
Société Mathématique de France
,
Paris
,
1998
). MR MR1652692 (99k:05108).
17.
Colin de Verdière
,
Y.
, “
Magnetic interpretation of the nodal defect on graphs
,”
Anal. PDE
6
(
5
),
1235
1242
(
2013
).
18.
Colin de Verdière
,
Y.
,
Torki-Hamza
,
N.
, and
Truc
,
F.
, “
Essential self-adjointness for combinatorial Schrödinger operators III—Magnetic fields
,”
Ann. Fac. Sci. Toulouse Math.
20
(
3
),
599
611
(
2011
).
19.
Demirel-Frank
,
S.
, “
Sharp eigenvalue bounds on quantum star graphs
,” preprint arXiv:1503.06915 [math.SP] (2015).
20.
Do
,
N. T.
and
Kuchment
,
P.
, “
Quantum graph spectra of a graphyne structure
,”
Nanoscale Syst.: Math. Model., Theory Appl.
2
,
107
123
(
2013
).
21.
Exner
,
P.
,
Kuchment
,
P.
, and
Winn
,
B.
, “
On the location of spectral edges in ℤ-periodic media
,”
J. Phys. A
43
(
47
),
474022
(
2010
).
22.
Fefferman
,
C. L.
and
Weinstein
,
M. I.
, “
Honeycomb lattice potentials and Dirac points
,”
J. Am. Math. Soc.
25
(
4
),
1169
1220
(
2012
).
23.
Fefferman
,
C. L.
and
Weinstein
,
M. I.
, “
Wave packets in honeycomb structures and two-dimensional Dirac equations
,”
Commun. Math. Phys.
326
(
1
),
251
286
(
2014
).
24.
Feynman
,
R. P.
, “
Forces in molecules
,”
Phys. Rev.
56
,
340
343
(
1939
).
25.
Fiedler
,
M.
, “
Eigenvectors of acyclic matrices
,”
Czech. Math. J.
25(100)
(
4
),
607
618
(
1975
), available at http://hdl.handle.net/10338.dmlcz/101356.
26.
Filonov
,
N.
, “
On an inequality for the eigenvalues of the Dirichlet and Neumann problems for the Laplace operator
,”
Algebra i Anal.
16
(
2
),
172
176
(
2004
).
27.
Friedlander
,
L.
, “
Some inequalities between Dirichlet and Neumann eigenvalues
,”
Arch. Ration. Mech. Anal.
116
(
2
),
153
160
(
1991
) (in English).
28.
Friedlander
,
L.
, “
Genericity of simple eigenvalues for a metric graph
,”
Isr. J. Math.
146
,
149
156
(
2005
).
29.
Gnutzmann
,
S.
and
Smilansky
,
U.
, “
Quantum graphs: Applications to quantum chaos and universal spectral statistics
,”
Adv. Phys.
55
(
5–6
),
527
625
(
2006
).
30.
Gnutzmann
,
S.
,
Smilansky
,
U.
, and
Weber
,
J.
, “
Nodal counting on quantum graphs
,”
Waves Random Media
14
(
1
),
S61
S73
(
2004
).
31.
Harrison
,
J. M.
,
Kuchment
,
P.
,
Sobolev
,
A.
, and
Winn
,
B.
, “
On occurrence of spectral edges for periodic operators inside the Brillouin zone
,”
J. Phys. A
40
(
27
),
7597
7618
(
2007
).
32.
Kato
,
T.
,
Perturbation Theory for Linear Operators
, 2nd ed.
Grundlehren der Mathematischen Wissenschaften
Vol.
Band 132
(
Springer-Verlag
,
Berlin
,
1976
). MR0407617 (53 #11389).
33.
Katsnelson
,
M. I.
,
Graphene: Carbon in Two Dimensions
(
Cambridge University Press
,
2012
).
34.
Kostrykin
,
V.
and
Schrader
,
R.
, “
Quantum wires with magnetic fluxes
,”
Commun. Math. Phys.
237
(
1-2
),
161
179
(
2003
).
35.
Kottos
,
T.
and
Smilansky
,
U.
, “
Periodic orbit theory and spectral statistics for quantum graphs
,”
Ann. Phys.
274
(
1
),
76
124
(
1999
).
36.
Kuchment
,
P.
,
Floquet Theory for Partial Differential Equations
,
Operator Theory: Advances and Applications
Vol.
60
(
Birkhäuser Verlag
,
Basel
,
1993
).
37.
Kuchment
,
P.
, “
Graph models for waves in thin structures
,”
Waves Random Media
12
(
4
),
R1
R24
(
2002
).
38.
Kuchment
,
P.
, “
Quantum graphs: An introduction and a brief survey
,” in
Analysis on Graphs and Its Applications
,
Proceedings of Symposia in Pure Mathematics
Vol.
77
(
American Mathematical Society
,
Providence, RI
,
2008
), pp.
291
312
.
39.
Kuchment
,
P.
and
Kunyansky
,
L.
, “
Differential operators on graphs and photonic crystals
,”
Adv. Comput. Math.
16
(
2–3
),
263
290
(
2002
).
40.
Kuchment
,
P.
and
Post
,
O.
, “
On the spectra of carbon nano-structures
,”
Commun. Math. Phys.
275
(
3
),
805
826
(
2007
).
41.
Lieb
,
E. H.
and
Loss
,
M.
, “
Fluxes, Laplacians, and Kasteleyn’s theorem
,”
Duke Math. J.
71
(
2
),
337
363
(
1993
).
42.
Novoselov
,
K.
, “
Nobel lecture: Graphene: Materials in the flatland
,”
Rev. Mod. Phys.
83
,
837
849
(
2011
).
43.
Pokornyĭ
,
Yu. V.
,
Pryadiev
,
V. L.
, and
Al’-Obeĭd
,
A.
, “
On the oscillation of the spectrum of a boundary value problem on a graph
,”
Mat. Zametki
60
(
3
),
468
470
(
1996
).
44.
Post
,
O.
,
Spectral Analysis on Graph-like Spaces
,
Lecture Notes in Mathematics
Vol.
2039
(
Springer Verlag
,
Berlin
,
2012
).
45.
Rueckriemen
,
R.
, “
Recovering quantum graphs from their Bloch spectrum
,” preprint arXiv:1101.6002 (
2011
).
46.
Schapotschnikow
,
P.
, “
Eigenvalue and nodal properties on quantum graph trees
,”
Waves Random Complex Media
16
(
3
),
167
178
(
2006
).
47.
Sunada
,
T.
, “
A discrete analogue of periodic magnetic Schrödinger operators
,” in
Geometry of the Spectrum (Seattle, WA, 1993)
,
Contemporary Mathematics
Vol.
173
(
American Mathematical Society
,
Providence, RI
,
1994
), pp.
283
299
. MR MR1298211 (95i:58185).
48.
Weyand
,
T.
, “
Zeros of eigenfunctions of the Schrödinger operator on graphs and their relation to the spectrum of the magnetic Schrödinger operator
,” Ph.D. thesis,
Texas A&M University
,
2014
.
You do not currently have access to this content.