The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians {h1, …, hm} operating on a d-dimensional quantum system ℋd, the problem consists in identifying a set of commuting Hamiltonians {H1, …, Hm} operating on a larger dE-dimensional system ℋdE which embeds ℋd as a proper subspace, such that hj = PHjP with P being the projection which allows one to recover ℋd from ℋdE. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for 𝔲(d) are provided.

1.
J. P.
Dowling
and
G. J.
Milburn
,
Philos. Trans. R. Soc., A
361
,
1655
(
2003
).
2.
D.
Deutsch
, in
Proceedings of the Sixth International Conference on Quantum Communication, Measurement and Computing
, edited by
J. H.
Shapiro
and
O.
Hirota
(
Rinton Press
,
Princeton, NJ
,
2003
).
3.
P.
Zoller
,
Th.
Beth
,
D.
Binosi
,
R.
Blatt
,
H.
Briegel
,
D.
Bruss
,
T.
Calarco
,
J. I.
Cirac
,
D.
Deutsch
,
J.
Eisert
,
A.
Ekert
,
C.
Fabre
,
N.
Gisin
,
P.
Grangiere
,
M.
Grassl
,
S.
Haroche
,
A.
Imamoglu
,
A.
Karlson
,
J.
Kempe
,
L.
Kouwenhoven
,
S.
Kröll
,
G.
Leuchs
,
M.
Lewenstein
,
D.
Loss
,
N.
Lütkenhaus
,
S.
Massar
,
J. E.
Mooij
,
M. B.
Plenio
,
E.
Polzik
,
S.
Popescu
,
G.
Rempe
,
A.
Sergienko
,
D.
Suter
,
J.
Twamley
,
G.
Wendin
,
R.
Werner
,
A.
Winter
,
J.
Wrachtrup
, and
A.
Zeilinger
,
Eur. Phys. J. D
36
,
203
(
2005
).
4.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
Cambridge
,
2000
).
5.
I.
Bloch
,
J.
Dalibard
, and
S.
Nascimbene
,
Nat. Phys.
8
,
267
(
2012
).
6.
R.
Blatt
and
C. F.
Roos
,
Nat. Phys.
8
,
277
(
2012
).
7.
L. P.
Kouwenhoven
,
D. G.
Austing
, and
S.
Tarucha
,
Rep. Prog. Phys.
64
,
701
(
2001
).
8.
D.
D’Alessandro
,
Introduction to Quantum Control and Dynamics
(
Chapman & Hall/CRC
,
Boca Raton, FL
,
2008
).
9.
D.
Dong
and
I. R.
Petersen
,
IET Control Theory Appl.
4
,
2651
(
2010
).
10.
G.
Dirr
and
U.
Helmke
,
GAMM-Mitt.
31
,
59
(
2008
).
11.
P.
Facchi
and
S.
Pascazio
,
Phys. Rev. Lett.
89
,
080401
(
2002
).
12.
P.
Facchi
and
S.
Pascazio
,
J. Phys. A: Math. Theor.
41
,
493001
(
2008
).
13.
P.
Facchi
,
S.
Tasaki
,
S.
Pascazio
,
H.
Nakazato
,
A.
Tokuse
, and
D. A.
Lidar
,
Phys. Rev. A
71
,
022302
(
2005
).
14.
D. K.
Burgarth
,
P.
Facchi
,
V.
Giovannetti
,
H.
Nakazato
,
S.
Pascazio
, and
K.
Yuasa
,
Nat. Commun.
5
,
5173
(
2014
).
15.
A. S.
Holevo
and
V.
Giovannetti
,
Rep. Prog. Phys.
75
,
046001
(
2012
).
16.
H. J.
Woerdeman
,
Linear Multilinear Algebra
42
,
239
(
1997
).
17.
D. P.
Kimsey
and
H. J.
Woerdeman
,
Int. J. Inf. Syst. Sci.
4
,
50
(
2008
), http://www.math.ualberta.ca/ijiss/SS-Volume-4-2008/No-1-08/SS-08-01-06.pdf.
18.
D. S.
Kaliuzhnyi-Verbovetskyi
,
I. M.
Spitkovsky
, and
H. J.
Woerdeman
,
Oper. Matrices
3
,
401
(
2009
).
19.
R. D.
Wasson
and
H. J.
Woerdeman
,
Linear Algebra Appl.
438
,
3530
(
2013
).
20.
I.
Degani
,
J.
Schiff
, and
D. J.
Tannor
,
Numer. Math.
101
,
479
(
2005
).
21.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
Cambridge
,
1990
).
22.
D.
Burgarth
and
K.
Yuasa
,
Phys. Rev. Lett.
108
,
080502
(
2012
).
23.
G. R.
Clifford
and
H.
Rossi
,
Analytic Functions of Several Complex Variables
(
American Mathematical Society
,
2009
).
24.

Actually one should work in an interaction picture, in which the system undergoes a spontaneous unitary evolution given by a free Hamiltonian Hfree, to which an interaction is added as prescribed by the experimenter.10 To simplify the discussion, we will assume that this step has already been factored out, i.e., we imagine that Hfree = 0.

25.

As a matter of fact, since global phases are irrelevant in quantum mechanics, it would be sufficient to focus on the algebra 𝔰𝔲(d) formed by the traceless self-adjoint d × d complex matrices.

26.

More precisely, P = Id ⊕ 0 is a rank-d orthogonal projection acting on the Hilbert space dE=dd, and Eq. (3) should read hj ⊕ 0 = PHjP. By abuse of notation, we will use the same symbol for hj on ℋd and for its extension hj ⊕ 0 on ℋdE. More generally, we can consider a Hamiltonian purification in a space dE=˜d˜d, where ˜d is isomorphic to ℋd. Again, in the following, we will not be pedantic in distinguishing isomorphic spaces and will commit the sin of denoting them with the same symbols.

27.

A normal completion of a complex matrix M ∈ ℂd×d is a normal matrixME ∈ ℂdE×dE such that M = PMEP, with P an orthogonal projector from ℂdE to ℂd. There is a one to one correspondence between complex matrices M and ordered pairs of Hermitian matrices (h1, h2), given by Mh1 + ih2. It is straightforward to verify that M is normal if and only if h1 and h2 commute. Thus, there is a one to one correspondence among purifications of pairs of Hermitian matrices and normal completions of complex matrices. Therefore, all the results on normal completions given in Refs. 17–19 apply also to purifications of two Hamiltonians.

28.

Notice that this provides a Hamiltonian purification up to the identification ddC0, with the subspace dC0dE, and the extension of hj in ℋdE is hj00. See Ref. 26.

29.
It is worth observing that the set of operators defined by
are still commuting and allow one to recover h1 and h2 by simply tracing out the ancilla system ℋ2. This is a sort of purification of S where the ancilla system is simply forgotten.
30.

We assume that maxσ(h1) is not degenerated, but it is not a restrictive assumption: if it is degenerated, one can purify the operators in a Hilbert space with a smaller dimension dE.

31.

Consider a Hermitian traceless operator A. This is always unitarily equivalent to a Hermitian operator with zeros on the diagonal. Hence we assume, without loss of generality, that A has zero diagonal. Take h1 diagonal with real and distinct diagonal entries λ1, …, λd. The equation A = i[h1, h2] then is equivalent to i(λiλj)hij(2)=aij, which has a solution hij(2)=aij/[i(λiλj)].

32.

Denote with λk* the eigenvalue with highest multiplicity of hk, and with gk(max) its multiplicity. Then, with the replacement hkhkIdλk*, we can assume hk to be of rank dgk(max).

33.

In general, hi is of rank dgi(max), so Ui can be taken as a d×(dgi(max)) matrix and D˜iDiag(dgi(max)).

34.

Identity (A5) clarifies that the fPU(uˆii) cannot be all mutually orthogonal with respect to the Hilbert-Schmidt scalar product. Indeed there can be at most d such matrices which are orthogonal. To see this simply observe that Tr[fPU(uˆii)fPU(uˆjj)]=XjXi2 and remember that the Xi are d2 column vectors of ℂd.

35.

To see this simply observe that for n < m, the matrices en×en±em×em, en,m(+)×en,m(+)en×enem×em and en,m()×en,m()en×enem×em form the set of generalized Pauli operators in the subspace spanned by the vectors en and em.

You do not currently have access to this content.