In the work of Nold and Oberlack [Phys. Fluids 25, 104101 (2013)], it was shown that three different instability modes of the linear stability analysis perturbing a linear shear flow can be derived in the common framework of Lie symmetry methods. These modes include the normal-mode, the Kelvin mode, and a new mode not reported before. As this was limited to linear shear, we now present a full symmetry classification for the linearised Navier-Stokes equations which are employed to study the stability of an arbitrary plane shear flow. If viscous effects for the perturbations are neglected, then we obtain additional symmetries and new Ansatz functions for a linear, an algebraic, an exponential, and a logarithmic base shear flow. If viscous effects are included in the formulation, then the linear and a quotient-type base flow allow for additional symmetries. The symmetry invariant solutions derived from the new and classical generic symmetries for all different flow types naturally lead to algebraic growth and decay for all cases except for two linear base flow cases. In turn this leads to the formulation of a novel eigenvalue problem in the analysis of the transition to turbulence for the respective flows, all of which are very distinct from the classical Orr-Sommerfeld eigenvalue problems.

1.
W. M.
Orr
, “
The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: A viscous liquid
,”
Proc. R. Ir. Acad., Sect. A
27
,
9
(
1907
).
2.
A.
Lundbladh
and
A. V.
Johansson
, “
Direct simulation of turbulent spots in plane Couette flow
,”
J. Fluid Mech.
229
,
499
(
1991
).
3.
N.
Tillmark
and
P. H.
Alfredsson
, “
Experiments on transition in plane Couette flow
,”
J. Fluid Mech.
235
,
89
(
1992
).
4.
L. W. T.
Kelvin
, “
Stability of fluid motion: Rectilinear motion of viscous fluid between two parallel plates
,”
Philos. Mag.
24
,
188
(
1887
).
5.
G.
Rosen
, “
General solution for perturbed plane Couette flow
,”
Phys. Fluids
14
,
2767
(
1971
).
6.
K. M.
Case
, “
Stability of inviscid plane Couette flow
,”
Phys. Fluids
3
,
143
(
1960
).
7.
L. N.
Trefethen
,
A. E.
Trefethen
,
S. C.
Reddy
, and
T. A.
Driscoll
, “
Hydrodynamic stability without eigenvalues
,”
Science
261
,
578
(
1993
).
8.
K.
Butler
and
B.
Farrell
, “
Three-dimensional optimal perturbations in viscous shear flow
,”
Phys. Fluids A
4
,
1637
(
1992
).
9.
S. C.
Reddy
,
P. J.
Schmid
, and
D. S.
Henningson
, “
Pseudospectra of the Orr-Sommerfeld operator
,”
SIAM J. Appl. Math.
53
,
15
(
1993
).
10.
L. H.
Gustavsson
, “
Energy growth of three-dimensional disturbances in plane Poiseuille flow
,”
J. Fluid Mech.
224
,
241
(
1991
).
11.
S.
Grossmann
, “
The onset of shear flow turbulence
,”
Rev. Mod. Phys.
72
,
603
(
2000
).
12.
P. J.
Schmid
, “
Nonmodal stability theory
,”
Annu. Rev. Fluid Mech.
39
,
129
(
2006
).
13.
W.
Horton
,
J. H.
Kim
,
G. D.
Chagelishvili
,
J. C.
Bowman
, and
J. G.
Lominadze
, “
Angular redistribution of nonlinear perturbations: A universal feature of nonuniform flows
,”
Phys. Rev. E
81
,
066304
(
2010
).
14.
X.
Garnaud
,
L.
Lesshafft
,
P.
Schmid
, and
P.
Huerre
, “
Modal and transient dynamics of jet flows
,”
Phys. Fluids
25
,
044103
(
2013
).
15.
A.
Nold
and
M.
Oberlack
, “
Symmetry analysis in linear hydrodynamic stability theory: Classical and new modes in linear shear
,”
Phys. Fluids
25
,
104101
(
2013
).
16.
R. E.
Boisvert
,
W. F.
Ames
, and
U. N.
Srivastava
, “
Group properties and new solutions of Navier-Stokes equations
,”
J. Eng. Math.
17
,
203
(
1983
).
17.
V.
Simonsen
and
J.
Meyer-ter Vehn
, “
Self-similar solutions in gas dynamics with exponential time dependence
,”
Phys. Fluids
9
,
1462
(
1997
).
18.
M.
Oberlack
,
H.
Wenzel
, and
N.
Peters
, “
On symmetries and averaging of the G-equation for premixed combustion
,”
Combust. Theory Modell.
5
,
363
(
2001
).
19.
M.
Oberlack
, “
A unified approach for symmetries in plane parallel turbulent shear flows
,”
J. Fluid Mech.
427
,
299
(
2001
).
20.
A. A.
Avramenko
,
D. G.
Blinov
,
I. V.
Shevchuk
, and
A. V.
Kuznetsov
, “
Symmetry analysis and self-similar forms of fluid flow and heat-mass transfer in turbulent boundary layer flow of a nanofluid
,”
Phys. Fluids
24
,
092003
(
2012
).
21.
G.
Barenblatt
,
N.
Galerkina
, and
M.
Luneva
, “
Evolution of a turbulent burst
,”
J. Eng. Phys. Thermophys.
53
,
1246
(
1987
).
22.
V.
Grebenev
, “
On a certain system of degenerate parabolic equations which arises in hydrodynamics
,”
Sib. Math. J.
35
,
670
(
1994
).
23.
G. W.
Bluman
,
A. F.
Cheviakov
, and
S. C.
Anco
,
Applications of Symmetry Methods to Partial Differential Equations
,
Applied Mathematical Science Series
Vol.
168
(
Springer
,
2010
).
24.
G.
Bluman
and
S.
Kumei
,
Symmetries and Differential Equations
(
Springer
,
Berlin
,
1989
).
25.
G.
Bluman
and
S.
Anco
,
Symmetry and Integration Methods for Differential Equations
,
Applied Mathematical Science Series
Vol.
154
(
Springer
,
2002
).
26.
B.
Cantwell
,
Introduction to Symmetry Analysis
(
Cambridge University Press
,
2002
), Vol.
29
.
27.
W.-H.
Steeb
,
Continuous Symmetries, Lie Algebras, Differential Equations and Computer Algebra
(
World Scientific
,
2007
).
28.
A.
Cheviakov
, “
GeM software package for computation of symmetries and conservation laws of differential equations
,”
Comput. Phys. Commun.
176
,
48
(
2007
).
29.
J.
Carminati
and
K.
Vu
, “
Symbolic computation and differential equations: Lie symmetries
,”
J. Symbolic Comput.
29
,
95
(
2000
).
30.
I.
Akhatov
,
R.
Gazizov
, and
N.
Ibragimov
, “
Group classification of the equations of nonlinear filtration
,”
Soviet Math. Dokl.
35
,
384
386
(
1987
).
31.
P.
Drazin
and
W.
Reid
,
Hydrodynamic Stability
(
Cambridge Mathematical Library
,
2004
).
32.
P.
Schmid
and
D.
Henningson
,
Stability and Transition in Shear Flows
(
Springer
,
2001
), Vol.
142
.
33.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
34.
I.
Wygnanski
, “
On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug
,”
J. Fluid Mech.
59
,
281
(
1973
).
You do not currently have access to this content.