We study the effects of three-body collisions in the physical properties of a two-mode Bose-Einstein condensate. The model introduced here includes two-body and three-body elastic and mode-exchange collisions and can be solved analytically. We will use this fact to show that three-body interactions can produce drastic changes in the probability distribution of the ground state and the dynamics of the relative population. In particular, we find that three-body interactions under certain circumstances may inhibit the collapse of the relative population.

1.
R. D.
Murphy
and
J. A.
Barker
, “
Three-body interactions in liquid and solid helium
,”
Phys. Rev. A
3
,
1037
(
1971
).
2.
N. R.
Cooper
, “
Exact ground states of rotating Bose gases close to a Feshbach resonance
,”
Phys. Rev. Lett.
92
,
220405
(
2004
).
3.
L.
Balents
,
M. P. A.
Fisher
, and
S. M.
Girvin
, “
Fractionalization in an easy-axis Kagome antiferromagnet
,”
Phys. Rev. B
65
,
224412
(
2002
).
4.
M.
Inguscio
,
S.
Stringari
, and
C.
Wieman
,
Bose-Einstein Condensation in Atomic Gases
(
IOS Press
,
1999
).
5.
H. P.
Büchler
,
A.
Micheli
, and
P.
Zoller
, “
Three-body interactions with cold polar molecules
,”
Nat. Phys.
3
,
726
(
2007
).
6.
T. B.
Laburthe
 et al, “
Observation of reduced three-body recombination in a correlated 1D degenerate Bose gas
,”
Phys. Rev. Lett.
92
,
190401
(
2004
).
7.
C. P.
Search
,
W.
Zhang
, and
P.
Meystre
, “
Inhibiting three-body recombination in atomic Bose-Einstein condensates
,”
Phys. Rev. Lett.
92
,
140401
(
2004
).
8.
H.
Heiselberg
, “
Extended Bose-Hubbard model with incompressible states at fractional numbers
,”
Phys. Rev. A
73
,
013628
(
2006
).
9.
S.
Fölling
 et al, “
Direct observation of second-order atom tunnelling
,”
Nature
448
,
1029
(
2007
).
10.
J.-Q.
Liang
,
J.-L.
Liu
,
W.-D.
Li
, and
Z.-J.
Li
, “
Atom-pair tunneling and quantum phase transition in the strong-interaction regime
,”
Phys. Rev. A
79
,
033617
(
2009
).
11.
P. S.
Julienne
, “
Estimating bounds on collisional relaxation rates of spin-polarized 87Rb atoms at ultracold temperatures
,”
J. Res. Natl. Inst. Stand. Technol.
101
,
487
(
1996
).
12.
C. J.
Myatt
,
E. A.
Burt
,
R. W.
Ghrist
,
E. A.
Cornell
, and
C. E.
Wieman
, “
Production of two overlapping Bose-Einstein condensates by sympathetic cooling
,”
Phys. Rev. Lett.
78
,
586
(
1997
).
13.
J.
Stenger
 et al, “
Spin domains in ground-state Bose-Einstein condensates
,”
Nature (London)
396
,
345
(
1998
).
14.
H. J.
Miesner
 et al, “
Observation of metastable states in spinor Bose-Einstein condensates
,”
Phys. Rev. Lett.
82
,
2228
(
1999
).
15.
P.
Barberis-Blostein
and
I.
Fuentes-Schuller
, “
Mode-exchange collisions in an exactly solvable two-mode Bose-Einstein condensate
,”
Phys. Rev. A
78
,
013641
(
2008
).
16.
P.
Barberis-Blostein
and
I.
Fuentes-Schuller
, “
A family of many-body models which are exactly solvable analytically
,”
J. Phys. A: Math. Theor.
40
,
F601
(
2007
).
17.
C.
Sabín
,
P.
Barberis-Blostein
, and
I.
Fuentes
, “
Analytical solution of a double-well Bose-Einstein Condensate
,” e-print arXiv:1406.4984 (
2014
).
18.
R. B.
Mann
,
M. B.
Young
, and
I.
Fuentes-Schuller
, “
A perturbative approach to inelastic collisions in a Bose-Einstein condensate
,”
J. Phys. B: At., Mol. Opt. Phys.
44
,
085031
(
2011
).
19.
G. J.
Milburn
,
J.
Corney
,
E. M.
Wright
, and
D. F.
Walls
, “
Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential
,”
Phys. Rev. A
55
,
4318
(
1997
).
20.
D.
Gordon
and
C. M.
Savage
, “
Creating macroscopic quantum superpositions with Bose-Einstein condensates
,”
Phys. Rev. A
59
,
4623
(
1999
).
21.
J. J.
Sakurai
,
Modern Quantum Mechanics
(
Addison-Wesley Publishing Company
,
1994
).
22.
D.
Rubeni
,
A.
Foerster
,
E.
Mattei
, and
I.
Roditi
, “
Quantum phase transitions in Bose-Einstein condensates from a Bethe ansatz perspective
,”
Nucl. Phys. B
856
,
698
(
2012
).
23.
M.
Albiez
 et al, “
Direct observation of tunneling and nonlinear self-trapping in a single Bosonic Josephson Junction
,”
Phys. Rev. Lett.
95
,
010402
(
2005
).
24.
Y.
Shin
 et al, “
Atom interferometry with Bose-Einstein condensates in a double-well potential
,”
Phys. Rev. Lett.
92
,
050405
(
2004
).
25.
M.
Saba
 et al, “
Light scattering to determine the relative phase of two Bose-Einstein condensates
,”
Science
307
,
1945
(
2005
).
You do not currently have access to this content.