A famous pre-Newtonian formula for π is obtained directly from the variational approach to the spectrum of the hydrogen atom in spaces of arbitrary dimensions greater than one, including the physical three dimensions.
REFERENCES
1.
2.
L.
Berggren
, J.
Borwein
, and P.
Borwein
, Pi: A source book
(Springer-Verlag
, 1997
).3.
S. J.
Miller
, “A probabilistic proof of Wallis’s formula for π
,” Am. Math. Monthly
115
, 740
-745
(2008
); e-print arXiv:0709.2181.4.
M.
Kovalyov
, “Elementary combinatorial-probabilistic proof of the Wallis and Stirling formulas
,” J. Math. Stat.
5
, 408
-410
(2009
).5.
J.
Wästlund
, “An elementary proof of Wallis’s product formula for pi
,” Linköping stud. Math.
2
, 1
-5
(2005
).6.
J.
Sondow
and E. W.
Weisstein
, “Wallis’ formula,” FromMathWorld– A Wolfram web resource, http://mathworld.wolfram.com/WallisFormula.html.7.
E. W.
Weisstein
, “Pi formulas,” FromMathWorld– A Wolfram web resource, http://mathworld.wolfram.com/PiFormulas.html.8.
9.
For an example of such a connection, see,
P. T.
Landsberg
, “A thermodynamic proof of the inequality between arithmetic and geometric mean
,” Phys. Lett. A
67
, 1
(1978
).10.
For example, the ratio is 0.849, 0.906, 0.932, 0.978, 0.998 for ℓ = 0, 1, 2, 10, 100.
11.
M. M.
Nieto
, “Hydrogen atom and relativistic pi-mesic atom in N-space dimensions
,” Am. J. Phys.
47
, 1067
(1979
).12.
J. D.
Louck
, Theory of Angular Momentum in N-Dimensional Space
, Los Alamos Scientific Laboratory monograph LA-2451
(LASL
, Los Alamos
, 1960
);J. D.
Louck
, J. Mol. Spectrosc.
4
, 298
(1960
);J. D.
Louck
and H. W.
Galbraith
, Rev. Mod. Phys.
44
, 540
(1972
).13.
T.
Friedmann
and C. R.
Hagen
, “Group-theoretical derivation of angular momentum eigenvalues in spaces of arbitrary dimensions
,” J. Math. Phys.
53
, 122102
(2012
); e-print arXiv:1211.1934.© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.